top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Autore Farrell Jay
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (440 p.)
Disciplina 629.8
Altri autori (Persone) PolycarpouMarios
Collana Wiley series in adaptive and learning systems for signal processing, communication and control
Soggetto topico Adaptive control systems
Feedback control systems
Soggetto genere / forma Electronic books.
ISBN 1-280-44804-0
9786610448043
0-470-32501-1
0-471-78181-9
0-471-78180-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation
2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types
3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties
3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems
4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence
4.6 Robust Learning Algorithms
Record Nr. UNINA-9910143397203321
Farrell Jay  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Adaptive approximation based control [[electronic resource] ] : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Autore Farrell Jay
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (440 p.)
Disciplina 629.8
Altri autori (Persone) PolycarpouMarios
Collana Wiley series in adaptive and learning systems for signal processing, communication and control
Soggetto topico Adaptive control systems
Feedback control systems
ISBN 1-280-44804-0
9786610448043
0-470-32501-1
0-471-78181-9
0-471-78180-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation
2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types
3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties
3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems
4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence
4.6 Robust Learning Algorithms
Record Nr. UNINA-9910830081303321
Farrell Jay  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Adaptive approximation based control : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Adaptive approximation based control : unifying neural, fuzzy and traditional adaptive approximation approaches / / Jay A. Farrell, Marios M. Polycarpou
Autore Farrell Jay
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (440 p.)
Disciplina 629.8/36
Altri autori (Persone) PolycarpouMarios
Collana Wiley series in adaptive and learning systems for signal processing, communication and control
Soggetto topico Adaptive control systems
Feedback control systems
ISBN 1-280-44804-0
9786610448043
0-470-32501-1
0-471-78181-9
0-471-78180-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ADAPTIVE APPROXIMATlON BASED CONTROL; CONTENTS; Preface; 1 Introduction; 1.1 Systems and Control Terminology; 1.2 Nonlinear Systems; 1.3 Feedback Control Approaches; 1.3.1 Linear Design; 1.3.2 Adaptive Linear Design; 1.3.3 Nonlinear Design; 1.3.4 Adaptive Approximation Based Design; 1.3.5 Example Summary; 1.4 Components of Approximation Based Control; 1.4.1 Control Architecture; 1.4.2 Function Approximator; 1.4.3 Stable Training Algorithm; 1.5 Discussion and Philosophical Comments; 1.6 Exercises and Design Problems; 2 Approximation Theory; 2.1 Motivating Example; 2.2 Interpolation
2.3 Function Approximation2.3.1 Offline (Batch) Function Approximation; 2.3.2 Adaptive Function Approximation; 2.4 Approximator Properties; 2.4.1 Parameter (Non) Linearity; 2.4.2 Classical Approximation Results; 2.4.3 Network Approximators; 2.4.4 Nodal Processors; 2.4.5 Universal Approximator; 2.4.6 Best Approximator Property; 2.4.7 Generalization; 2.4.8 Extent of Influence Function Support; 2.4.9 Approximator Transparency; 2.4.10 Haar Conditions; 2.4.11 Multivariable Approximation by Tensor Products; 2.5 Summary; 2.6 Exercises and Design Problems; 3 Approximation Structures; 3.1 Model Types
3.1.1 Physically Based Models3.1.2 Structure (Model) Free Approximation; 3.1.3 Function Approximation Structures; 3.2 Polynomials; 3.2.1 Description; 3.2.2 Properties; 3.3 Splines; 3.3.1 Description; 3.3.2 Properties; 3.4 Radial Basis Functions; 3.4.1 Description; 3.4.2 Properties; 3.5 Cerebellar Model Articulation Controller; 3.5.1 Description; 3.5.2 Properties; 3.6 Multilayer Perceptron; 3.6.1 Description; 3.6.2 Properties; 3.7 Fuzzy Approximation; 3.7.1 Description; 3.7.2 Takagi-Sugeno Fuzzy Systems; 3.7.3 Properties; 3.8 Wavelets; 3.8.1 Multiresolution Analysis (MRA); 3.8.2 MRA Properties
3.9 Further Reading3.10 Exercises and Design Problems; 4 Parameter Estimation Methods; 4.1 Formulation for Adaptive Approximation; 4.1.1 Illustrative Example; 4.1.2 Motivating Simulation Examples; 4.1.3 Problem Statement; 4.1.4 Discussion of Issues in Parametric Estimation; 4.2 Derivation of Parametric Models; 4.2.1 Problem Formulation for Full-State Measurement; 4.2.2 Filtering Techniques; 4.2.3 SPR Filtering; 4.2.4 Linearly Parameterized Approximators; 4.2.5 Parametric Models in State Space Form; 4.2.6 Parametric Models of Discrete-Time Systems
4.2.7 Parametric Models of Input-Output Systems4.3 Design of Online Learning Schemes; 4.3.1 Error Filtering Online Learning (EFOL) Scheme; 4.3.2 Regressor Filtering Online Learning (RFOL) Scheme; 4.4 Continuous-Time Parameter Estimation; 4.4.1 Lyapunov-Based Algorithms; 4.4.2 Optimization Methods; 4.4.3 Summary; 4.5 Online Learning: Analysis; 4.5.1 Analysis of LIP EFOL Scheme with Lyapunov Synthesis Method; 4.5.2 Analysis of LIP RFOL Scheme with the Gradient Algorithm; 4.5.3 Analysis of LIP RFOL Scheme with RLS Algorithm; 4.5.4 Persistency of Excitation and Parameter Convergence
4.6 Robust Learning Algorithms
Record Nr. UNINA-9910876607803321
Farrell Jay  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced techniques and technology of computer-aided feedback control / / Jean Mbihi
Advanced techniques and technology of computer-aided feedback control / / Jean Mbihi
Autore Mbihi Jean
Pubbl/distr/stampa Hoboken, New Jersey : , : Iste Ltd/John Wiley and Sons Inc., , 2018
Descrizione fisica 1 online resource (259 pages)
Disciplina 629.83
Soggetto topico Feedback control systems
Automatic control
Soggetto genere / forma Electronic books.
ISBN 1-119-52832-1
1-119-52835-6
1-119-45295-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910555173603321
Mbihi Jean  
Hoboken, New Jersey : , : Iste Ltd/John Wiley and Sons Inc., , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced techniques and technology of computer-aided feedback control / / Jean Mbihi
Advanced techniques and technology of computer-aided feedback control / / Jean Mbihi
Autore Mbihi Jean
Pubbl/distr/stampa Hoboken, New Jersey : , : Iste Ltd/John Wiley and Sons Inc., , 2018
Descrizione fisica 1 online resource (259 pages)
Disciplina 629.83
Soggetto topico Feedback control systems
Automatic control
ISBN 1-119-52832-1
1-119-52835-6
1-119-45295-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830297803321
Mbihi Jean  
Hoboken, New Jersey : , : Iste Ltd/John Wiley and Sons Inc., , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in analysis and control of time-delayed dynamical systems / / edited by Jian-Qiao Sun, Qiang Ding
Advances in analysis and control of time-delayed dynamical systems / / edited by Jian-Qiao Sun, Qiang Ding
Pubbl/distr/stampa Singapore : , : World Scientific Publishing Company, , [2013]
Descrizione fisica 1 online resource (355 p.)
Disciplina 629.83
Altri autori (Persone) DingQiang
SunJian-Qiao
Soggetto topico Feedback control systems
Time delay systems
Soggetto genere / forma Electronic books.
ISBN 981-4525-50-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; Chapter 1 Complete Quadratic Lyapunov-Krasovskii Functional: Limitations, Computational Efficiency, and Convergence Keqin Gu; 1. Introduction; 2. Complete Quadratic Lyapunov-Krasovskii Functional; 3. Discretized Lyapunov Functional Method; 4. Coupled Differential-difference Equations; 5. Miscellaneous Issues; 5.1. Computational Efficiency; 5.2. Convergence Issue for Multiple Neutral Delays; 5.3. Lyapunov-Krasovskii Functionals Containing State Derivatives; 6. SOS Method; 7. Conclusions and Perspectives; References
Chapter 2 Recent Approaches for the Numerical Solution of State-dependent Delay Differential Equations with Discontinuities Alfredo Bellen1. Introduction; 2. Weak Solutions; 3. Regularization Techniques; 4. Comparing Regularizations; References; Chapter 3 Engineering Applications of Time-periodic Time-delayed Systems Gabor Stepan; 1. Introduction; 2. Delayed Mathieu Equation; 3. Semi-discretization Method for Periodic DDEs; 4. Engineering Applications; 4.1. Modeling and Stability of Milling Operations; 4.2. Cutting with Varying Spindle Speed
4.3. Act-and-wait Control of Force Controlled Robots5. Conclusions; References; Chapter 4 Synchronization in Delay-coupled Complex Networks Eckehard Scholl; 1. Introduction; 2. Stability of Synchronization for Large Delay; 3. Cluster Synchronization; 4. Adaptive Synchronization; 4.1. Speed-gradient Method; 4.2. Zero-lag Synchronization; 4.3. Splay State and Cluster Synchronization; 4.4. Controlling Several Parameters Simultaneously; 5. Transitions between Synchronization and Desychronization; 5.1. Excitability of Type II; 5.2. Excitability of Type I; 6. Conclusion and Outlook; References
Chapter 5 Stochastic Dynamics and Optimal Control of Quasi Integrable Hamiltonian Systems with Time-delayed Feedback Control Weiqiu Zhu, Zhonghua Liu1. Introduction; 2. Stochastic Averaging Method for Quasi Integrable Hamiltonian Systems with Time-delayed Feedback Control; 2.1. Gaussian White Noise Excitations; 2.1.1. Non-resonant Case; 2.1.2. Resonant Case; 2.2. Wide-band Random Excitations; 2.2.1. Non-resonant Case; 2.2.2. Resonant Case; 2.3. Narrow-band Bounded Noise Excitation; 2.3.1. External Resonance Only; 2.3.2. Both Internal and External Resonances
2.4. Combined Excitations of Harmonic Function and One Kind of above Random Processes2.4.1. Internal Resonance Only; 2.4.2. External Resonance Only; 2.4.3. Both Internal and External Resonances; 3. Stochastic Dynamics of Quasi Integrable Hamiltonian Systems with Time-delayed Feedback Control; 3.1. Response; 3.2. Stochastic Stability; 3.3. Stochastic Bifurcation; 3.4. First Passage Failure; 3.4.1. Gaussian White Noise Excitation; 4. Stochastic Optimal Control of Quasi Integrable Hamiltonian Systems with Time-delayed Feedback Control; 4.1. Response Minimization Control; 4.2. Stabilization
4.3. Minimax Optimal Bounded Control
Record Nr. UNINA-9910453633703321
Singapore : , : World Scientific Publishing Company, , [2013]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
All-optical noninvasive delayed feedback control of semiconductor lasers / / Sylvia Schikora
All-optical noninvasive delayed feedback control of semiconductor lasers / / Sylvia Schikora
Autore Schikora Sylvia
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Wiesbaden, : Springer Spektrum, c2013
Descrizione fisica 1 online resource (118 p.)
Disciplina 621.36
Soggetto topico Semiconductor lasers
Feedback control systems
ISBN 3-658-01540-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto  All-Optical Control Setup -- Stable States with Resonant Fabry-Perot Feedback -- Control of an Unstable Stationary State -- Control of Unstable Self-Pulsations -- Controlling Chaos -- Control of a Torsionfree Orbit.
Record Nr. UNINA-9910739419003321
Schikora Sylvia  
Wiesbaden, : Springer Spektrum, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Analysis and design of feedback control systems / Robert G. Brown, George J. Thaler
Analysis and design of feedback control systems / Robert G. Brown, George J. Thaler
Autore Brown, Robert G.
Edizione [2nd ed.]
Pubbl/distr/stampa New York : McGraw-Hill Book Co. ; Tokyo : Kogakusha Company, 1960
Descrizione fisica xiii, 648 p. : ill. ; 24 cm.
Altri autori (Persone) Thaler, George J.author
Collana McGraw-Hill electrical and electronic engineering series
Soggetto topico Feedback control systems
Classificazione 621.3.1
621.3.6
629.83
TJ213.T49
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000810359707536
Brown, Robert G.  
New York : McGraw-Hill Book Co. ; Tokyo : Kogakusha Company, 1960
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
The Art of Reinforcement Learning : Fundamentals, Mathematics, and Implementations with Python / / by Michael Hu
The Art of Reinforcement Learning : Fundamentals, Mathematics, and Implementations with Python / / by Michael Hu
Autore Hu Michael
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Berkeley, CA : , : Apress : , : Imprint : Apress, , 2023
Descrizione fisica 1 online resource (290 pages)
Disciplina 006.31
Soggetto topico Reinforcement learning
Feedback control systems
Python (Computer program language)
ISBN 1-4842-9606-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I: Foundation -- Chapter 1: Introduction to Reinforcement Learning -- Chapter 2: Markov Decision Processes -- Chapter 3: Dynamic Programming -- Chapter 4: Monte Carlo Methods -- Chapter 5: Temporal Difference Learning -- Part II: Value Function Approximation -- Chapter 6: Linear Value Function Approximation -- Chapter 7: Nonlinear Value Function Approximation -- Chapter 8: Improvement to DQN -- Part III: Policy Approximation -- Chapter 9: Policy Gradient Methods -- Chapter 10: Problems with Continuous Action Space -- Chapter 11: Advanced Policy Gradient Methods -- Part IV: Advanced Topics -- Chapter 12: Distributed Reinforcement Learning -- Chapter 13: Curiosity-Driven Exploration -- Chapter 14: Planning with a Model – AlphaZero.
Record Nr. UNINA-9910770270703321
Hu Michael  
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Automation and Control / / Constanin Volosencu, [and three others], editors
Automation and Control / / Constanin Volosencu, [and three others], editors
Pubbl/distr/stampa London : , : IntechOpen, , 2021
Descrizione fisica 1 online resource (420 pages)
Disciplina 629.8312
Soggetto topico Control theory
Feedback control systems
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910688337103321
London : , : IntechOpen, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui