Vai al contenuto principale della pagina

Protein Homology Detection Through Alignment of Markov Random Fields : Using MRFalign / / by Jinbo Xu, Sheng Wang, Jianzhu Ma



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Xu Jinbo Visualizza persona
Titolo: Protein Homology Detection Through Alignment of Markov Random Fields : Using MRFalign / / by Jinbo Xu, Sheng Wang, Jianzhu Ma Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Edizione: 1st ed. 2015.
Descrizione fisica: 1 online resource (59 p.)
Disciplina: 004
005.55
519.5
570285
Soggetto topico: Bioinformatics
Mathematical statistics
Statistics
Computational Biology/Bioinformatics
Probability and Statistics in Computer Science
Statistics for Life Sciences, Medicine, Health Sciences
Persona (resp. second.): WangSheng
MaJianzhu
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references.
Nota di contenuto: Introduction -- Method -- Software -- Experiments and Results -- Conclusion.
Sommario/riassunto: This work covers sequence-based protein homology detection, a fundamental and challenging bioinformatics problem with a variety of real-world applications. The text first surveys a few popular homology detection methods, such as Position-Specific Scoring Matrix (PSSM) and Hidden Markov Model (HMM) based methods, and then describes a novel Markov Random Fields (MRF) based method developed by the authors. MRF-based methods are much more sensitive than HMM- and PSSM-based methods for remote homolog detection and fold recognition, as MRFs can model long-range residue-residue interaction. The text also describes the installation, usage and result interpretation of programs implementing the MRF-based method.
Titolo autorizzato: Protein Homology Detection Through Alignment of Markov Random Fields  Visualizza cluster
ISBN: 3-319-14914-8
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910299230003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: SpringerBriefs in Computer Science, . 2191-5768