LEADER 03566nam 22007095 450 001 9910299230003321 005 20251116133922.0 010 $a3-319-14914-8 024 7 $a10.1007/978-3-319-14914-1 035 $a(CKB)3710000000342593 035 $a(EBL)1966836 035 $a(SSID)ssj0001424573 035 $a(PQKBManifestationID)11891915 035 $a(PQKBTitleCode)TC0001424573 035 $a(PQKBWorkID)11367548 035 $a(PQKB)10906036 035 $a(DE-He213)978-3-319-14914-1 035 $a(MiAaPQ)EBC1966836 035 $a(PPN)183518187 035 $a(EXLCZ)993710000000342593 100 $a20150122d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aProtein Homology Detection Through Alignment of Markov Random Fields $eUsing MRFalign /$fby Jinbo Xu, Sheng Wang, Jianzhu Ma 205 $a1st ed. 2015. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2015. 215 $a1 online resource (59 p.) 225 1 $aSpringerBriefs in Computer Science,$x2191-5768 300 $aDescription based upon print version of record. 311 08$a3-319-14913-X 320 $aIncludes bibliographical references. 327 $aIntroduction -- Method -- Software -- Experiments and Results -- Conclusion. 330 $aThis work covers sequence-based protein homology detection, a fundamental and challenging bioinformatics problem with a variety of real-world applications. The text first surveys a few popular homology detection methods, such as Position-Specific Scoring Matrix (PSSM) and Hidden Markov Model (HMM) based methods, and then describes a novel Markov Random Fields (MRF) based method developed by the authors. MRF-based methods are much more sensitive than HMM- and PSSM-based methods for remote homolog detection and fold recognition, as MRFs can model long-range residue-residue interaction. The text also describes the installation, usage and result interpretation of programs implementing the MRF-based method. 410 0$aSpringerBriefs in Computer Science,$x2191-5768 606 $aBioinformatics 606 $aMathematical statistics 606 $aStatistics 606 $aComputational Biology/Bioinformatics$3https://scigraph.springernature.com/ontologies/product-market-codes/I23050 606 $aProbability and Statistics in Computer Science$3https://scigraph.springernature.com/ontologies/product-market-codes/I17036 606 $aBioinformatics$3https://scigraph.springernature.com/ontologies/product-market-codes/L15001 606 $aStatistics for Life Sciences, Medicine, Health Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/S17030 615 0$aBioinformatics. 615 0$aMathematical statistics. 615 0$aStatistics. 615 14$aComputational Biology/Bioinformatics. 615 24$aProbability and Statistics in Computer Science. 615 24$aBioinformatics. 615 24$aStatistics for Life Sciences, Medicine, Health Sciences. 676 $a004 676 $a005.55 676 $a519.5 676 $a570285 700 $aHo?$b Ku?m-p'a$4aut$4http://id.loc.gov/vocabulary/relators/aut$01868555 702 $aWang$b Sheng$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aMa$b Jianzhu$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910299230003321 996 $aProtein Homology Detection Through Alignment of Markov Random Fields$94476519 997 $aUNINA