Vai al contenuto principale della pagina
Autore: | Xu Jinbo |
Titolo: | Protein Homology Detection Through Alignment of Markov Random Fields : Using MRFalign / / by Jinbo Xu, Sheng Wang, Jianzhu Ma |
Pubblicazione: | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015 |
Edizione: | 1st ed. 2015. |
Descrizione fisica: | 1 online resource (59 p.) |
Disciplina: | 004 |
005.55 | |
519.5 | |
570285 | |
Soggetto topico: | Bioinformatics |
Mathematical statistics | |
Statistics | |
Computational Biology/Bioinformatics | |
Probability and Statistics in Computer Science | |
Statistics for Life Sciences, Medicine, Health Sciences | |
Persona (resp. second.): | WangSheng |
MaJianzhu | |
Note generali: | Description based upon print version of record. |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | Introduction -- Method -- Software -- Experiments and Results -- Conclusion. |
Sommario/riassunto: | This work covers sequence-based protein homology detection, a fundamental and challenging bioinformatics problem with a variety of real-world applications. The text first surveys a few popular homology detection methods, such as Position-Specific Scoring Matrix (PSSM) and Hidden Markov Model (HMM) based methods, and then describes a novel Markov Random Fields (MRF) based method developed by the authors. MRF-based methods are much more sensitive than HMM- and PSSM-based methods for remote homolog detection and fold recognition, as MRFs can model long-range residue-residue interaction. The text also describes the installation, usage and result interpretation of programs implementing the MRF-based method. |
Titolo autorizzato: | Protein Homology Detection Through Alignment of Markov Random Fields |
ISBN: | 3-319-14914-8 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910299230003321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |