top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
A practical guide to protein engineering / / Tuck Seng Wong, Kang Lan Tee
A practical guide to protein engineering / / Tuck Seng Wong, Kang Lan Tee
Autore Wong Tuck Seng
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2020]
Descrizione fisica 1 online resource (XV, 202 p. 91 illus., 68 illus. in color.)
Disciplina 660.63
Collana Learning materials in biosciences
Soggetto topico Protein engineering
ISBN 3-030-56898-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Literature Search -- Sequence Analysis -- Structural Analysis -- Protein Expression Hosts and Expression Plasmids -- Gene Cloning -- Protein Expression -- Assay -- Gene Mutagenesis -- High-Throughput Screening (HTS) -- Protein Variants Analysis and Characterization -- Continuing from Protein Variants -- Employability.
Record Nr. UNINA-9910424631703321
Wong Tuck Seng  
Cham, Switzerland : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Process control, intensification, and digitalisation in continuous biomanufacturing / / edited by G. Subramanian
Process control, intensification, and digitalisation in continuous biomanufacturing / / edited by G. Subramanian
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (401 pages)
Disciplina 660.63
Soggetto topico Biochemical engineering
Soggetto genere / forma Electronic books.
ISBN 3-527-82732-3
3-527-82734-X
3-527-82733-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Continuous Biomanufacturing -- Chapter 1 Strategies for Continuous Processing in Microbial Systems -- 1.1 Introduction -- 1.1.1 Microbial Hosts and Their Applications in Biotechnology -- 1.1.2 Regulatory Demands for Their Applied Cultivation Mode -- 1.2 Overview of Applied Cultivation Methods in Industrial Biotechnology -- 1.2.1 Batch and Fed‐Batch Cultivations -- 1.2.1.1 Conventional Approaches and Their Technical Limitations -- 1.2.1.2 Feeding and Control Strategies Using E. coli as a Model Organism -- 1.2.2 Introduction into Microbial Continuous Biomanufacturing (CBM) -- 1.2.2.1 General Considerations -- 1.2.2.2 Mass Balancing and the Macroscopic Effects in Chemostat Cultures -- 1.2.3 Microbial CBM vs. Mammalian CBM -- 1.2.3.1 Differences in Upstream of Microbial CBM Compared with Cell Culture -- 1.2.3.2 Downstream in Microbial CBM -- 1.3 Monitoring and Control Strategies to Enable CBM with Microbials -- 1.3.1 Subpopulation Monitoring and Possible PAT Tools Applicable for Microbial CBM -- 1.3.2 Modeling and Control Strategies to Enable CBM with Microbials -- 1.4 Chances and Drawbacks in Continuous Biomanufacturing with E. coli -- 1.4.1 Optimization of Plant Usage Using CBM with E. coli -- 1.4.2 Reasons Why CBM with E. coli Is Not State of the Art (Yet) -- 1.4.2.1 Formation of Subpopulation Following Genotypic Diversification -- 1.4.2.2 Formation of Subpopulation Following Phenotypic Diversification -- 1.4.2.3 Is Genomic Integration of the Target Protein an Enabler for CBM with E. coli? -- 1.4.3 Solutions to Overcome the Formation of Subpopulations and How to Realize CBM with E. coli in the Future -- 1.5 Conclusion and Outlook -- References -- Chapter 2 Control of Continuous Manufacturing Processes for Production of Monoclonal Antibodies -- 2.1 Introduction.
2.2 Control of Upstream Mammalian Bioreactor for Continuous Production of mAbs -- 2.3 Integration Between Upstream and Downstream in Continuous Production of mAbs -- 2.3.1 Continuous Clarification as a Bridge Between Continuous Upstream and Downstream -- 2.3.2 Considerations for Process Integration -- 2.4 Control of Continuous Downstream Unit Operations in mAb Manufacturing -- 2.4.1 Control of Continuous Dead‐End Filtration -- 2.4.2 Control of Continuous Chromatography -- 2.4.3 Control of Continuous Viral Inactivation -- 2.4.4 Control of Continuous Precipitation -- 2.4.5 Control of Continuous Formulation -- 2.5 Integration Between Adjacent Unit Operations Using Surge Tanks -- 2.6 Emerging Approaches for High‐Level Monitoring and Control of Continuous Bioprocesses -- 2.6.1 Artificial Intelligence (AI) and Machine Learning (ML) Control -- 2.6.2 Statistical Process Control -- 2.6.3 Process Digitalization -- 2.7 Conclusions -- References -- Chapter 3 Artificial Intelligence and the Control of Continuous Manufacturing -- 3.1 Introduction -- 3.2 Continuous Monitoring and Validation -- 3.3 Choosing Other Control Charts -- 3.4 Information Awareness -- 3.5 Management and Personnel -- References -- Part II Intensified Biomanufacturing -- Chapter 4 Bioprocess Intensification: Technologies and Goals -- 4.1 Introduction -- 4.2 Bioprocess Intensification -- 4.2.1 Definition -- 4.2.2 New Directions -- 4.2.3 Sustainability Synergy -- 4.3 Intensification Techniques -- 4.3.1 Enterprise Resource Management -- 4.3.2 Synthetic Biology and Genetic Engineering -- 4.3.3 New Expression Systems -- 4.3.4 Bioprocess Optimization -- 4.3.5 Bioprocess Simplification -- 4.3.6 Continuous Bioprocessing -- 4.4 Materials -- 4.4.1 Media Optimization -- 4.4.2 Variability -- 4.5 Digital Biomanufacturing -- 4.5.1 Data -- 4.5.2 Bioprocess Control -- 4.5.3 Digital Twins.
4.5.4 Artificial Intelligence -- 4.5.5 Cloud/Edge Computing -- 4.6 Bioprocess Modeling -- 4.7 Automation and Autonomation -- 4.8 Bioprocess Monitoring -- 4.9 Improved Process and Product Development -- 4.9.1 Design of Experiments -- 4.9.2 QbD and PAT -- 4.9.3 High‐Throughput Systems -- 4.9.4 Methods -- 4.9.5 Commercialized Systems -- 4.10 Advanced Process Control -- 4.11 Bioreactor Design -- 4.12 Single‐Use Systems -- 4.13 Facilities -- 4.14 Conclusion -- Acknowledgment -- References -- Chapter 5 Process Intensification Based on Disposable Solutions as First Step Toward Continuous Processing -- 5.1 Introduction -- 5.1.1 Theory and Practice of Process Intensification -- 5.1.2 Current Bioprocessing -- 5.1.3 General Aspects of Disposables -- 5.2 Technical Solutions -- 5.2.1 Process Development -- 5.2.2 Upstream Processing Unit Operations -- 5.2.2.1 High‐Density, Large‐Volume Cell Banking in Bags -- 5.2.2.2 Seed Train Intensification -- 5.2.2.3 Cell Retention and Harvest -- 5.2.3 Downstream Processing Unit Operations -- 5.2.3.1 Depth Filtration -- 5.2.3.2 In‐line Virus Inactivation -- 5.2.3.3 In‐line Buffer Blending and Dilution -- 5.2.3.4 Chromatography -- 5.2.3.5 Tangential Flow Filtration -- 5.2.3.6 Drug Substance Freezing -- 5.3 Process Analytical Technology and Sensors -- 5.3.1 Sensors for USP Applications -- 5.3.2 Sensors for DSP Applications -- 5.4 Conclusions -- 5.4.1 Transition from Traditional to Intensified Processes -- 5.4.2 Impact on Cost -- 5.4.3 Influence on Time -- References -- Chapter 6 Single‐Use Continuous Manufacturing and Process Intensification for Production of Affordable Biological Drugs -- 6.1 Background -- 6.2 State of Upstream and Downstream Processes -- 6.2.1 Sizing Upstream Process -- 6.2.2 Sizing Downstream Process -- 6.2.3 Continuous Process Retrofit into the Existing Facility -- 6.2.3.1 Upstream Process.
6.2.3.2 Downstream Process -- 6.2.4 Learning from Chemical Industry -- 6.3 Cell Line Development and Manufacturing Role -- 6.3.1 Speeding Up Upstream and Downstream Development -- 6.3.2 The State of Manufacturing -- 6.4 Process Integration and Intensification -- 6.4.1 Intensification of a Multiproduct Perfusion Platform -- 6.4.2 Upstream Process Intensification Using Perfusion Process -- 6.5 Process Intensification and Integration in Continuous Manufacturing -- 6.6 Single‐Use Manufacturing to Maximize Efficiency -- 6.6.1 The Benefits of SUT in the New Era of Biomanufacturing -- 6.6.2 Managing an SUT Cost Profile -- 6.6.3 In‐Line Conditioning (ILC) -- 6.6.4 Impact of Single‐Use Strategy on Manufacturing Cost of Goods -- 6.6.5 Limitations of SUT -- 6.7 Process Economy -- 6.7.1 Biopharma Market Dynamics -- 6.7.2 Management of the Key Risks of a Budding Market -- 6.8 Future Perspective -- References -- Part III Digital Biomanufacturing -- Chapter 7 Process Intensification and Industry 4.0: Mutually Enabling Trends -- 7.1 Introduction -- 7.2 Enabling Technologies for Process Intensification -- 7.2.1 Process Intensification in Biomanufacturing -- 7.2.2 Process Intensification in Cell Culture -- 7.2.3 Process Intensification in Downstream Processing -- 7.2.4 Process Integration: Manufacturing Platforms -- 7.2.5 The Two Elephants in the (Clean) Room -- 7.3 Digital Opportunities in Process Development -- 7.4 Digital Opportunities in Manufacturing -- 7.5 Digital Opportunities in Quality Assurance -- 7.6 Considerations -- 7.6.1 Challenges -- 7.6.2 Gene Therapy -- 7.7 Conclusions -- References -- Chapter 8 Consistent Value Creation from Bioprocess Data with Customized Algorithms: Opportunities Beyond Multivariate Analysis -- 8.1 Motivation -- 8.2 Modeling of Process Dynamics -- 8.2.1 Hybrid Models -- 8.2.2 Conclusion.
8.3 Predictive Models for Critical Quality Attributes -- 8.3.1 Historical Product Quality Prediction -- 8.3.2 Synergistic Prediction of Process and Product Quality -- 8.4 Extrapolation and Process Optimization -- 8.5 Bioprocess Monitoring Using Soft Sensors -- 8.5.1 Static Soft Sensor -- 8.5.2 Dynamic Soft Sensors -- 8.5.3 Concluding Remarks -- 8.6 Scale‐Up and Scale‐Down -- 8.6.1 Differences Between Lab and Manufacturing Scales -- 8.6.2 Scale‐Up -- 8.6.3 Scale‐Down -- 8.6.4 Conclusions -- 8.7 Digitalization as an Enabler for Continuous Manufacturing -- References -- Chapter 9 Digital Twins for Continuous Biologics Manufacturing -- 9.1 Introduction -- 9.2 Digital Twins in Continuous Biomanufacturing -- 9.2.1 USP Fed Batch and Perfusion -- 9.2.2 Capture, LLE, Cell Separation, and Clarification -- 9.2.2.1 Fluid Dynamics (Red) -- 9.2.2.2 Phase Equilibrium (Blue) -- 9.2.2.3 Kinetics (Green) -- 9.2.3 UF/DF, SPTFF for Concentration, and Buffer Exchange -- 9.2.4 Precipitation/Crystallization -- 9.2.5 Chromatography and Membrane Adsorption -- 9.2.5.1 General Rate Model Chromatography -- 9.2.5.2 SEC -- 9.2.5.3 Adsorption Mechanism -- 9.2.5.4 IEX‐SMA -- 9.2.5.5 HIC‐SMA -- 9.2.5.6 Modified Mixed‐Mode SMA -- 9.2.5.7 Modified HIC‐SMA Process Model Exemplification by mab Purification -- 9.2.5.8 Model Parameter Determination -- 9.2.5.9 Phase Equilibrium Isotherms -- 9.2.5.10 Mass Transfer Kinetics -- 9.2.6 Lyophilization -- 9.2.6.1 Thermal Conductivity of the Vial -- 9.2.6.2 Product Resistance -- 9.2.6.3 Product Temperature -- 9.2.6.4 Water Properties -- 9.3 Process Integration and Demonstration -- 9.3.1 USP Fed Batch and Perfusion -- 9.3.2 Capture, LLE, Cell Separation, and Clarification -- 9.3.3 UF/DF, SPTFF for Concentration, and Buffer Exchange -- 9.3.4 Precipitation/Crystallization -- 9.3.5 Chromatography and Membrane Adsorption -- 9.3.6 Lyophilization.
9.3.7 Comparison Between Conceptual Process Design and Experimental Data.
Record Nr. UNINA-9910555178203321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Process control, intensification, and digitalisation in continuous biomanufacturing / / edited by G. Subramanian
Process control, intensification, and digitalisation in continuous biomanufacturing / / edited by G. Subramanian
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2022]
Descrizione fisica 1 online resource (401 pages)
Disciplina 660.63
Soggetto topico Biochemical engineering
ISBN 3-527-82732-3
3-527-82734-X
3-527-82733-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- Part I Continuous Biomanufacturing -- Chapter 1 Strategies for Continuous Processing in Microbial Systems -- 1.1 Introduction -- 1.1.1 Microbial Hosts and Their Applications in Biotechnology -- 1.1.2 Regulatory Demands for Their Applied Cultivation Mode -- 1.2 Overview of Applied Cultivation Methods in Industrial Biotechnology -- 1.2.1 Batch and Fed‐Batch Cultivations -- 1.2.1.1 Conventional Approaches and Their Technical Limitations -- 1.2.1.2 Feeding and Control Strategies Using E. coli as a Model Organism -- 1.2.2 Introduction into Microbial Continuous Biomanufacturing (CBM) -- 1.2.2.1 General Considerations -- 1.2.2.2 Mass Balancing and the Macroscopic Effects in Chemostat Cultures -- 1.2.3 Microbial CBM vs. Mammalian CBM -- 1.2.3.1 Differences in Upstream of Microbial CBM Compared with Cell Culture -- 1.2.3.2 Downstream in Microbial CBM -- 1.3 Monitoring and Control Strategies to Enable CBM with Microbials -- 1.3.1 Subpopulation Monitoring and Possible PAT Tools Applicable for Microbial CBM -- 1.3.2 Modeling and Control Strategies to Enable CBM with Microbials -- 1.4 Chances and Drawbacks in Continuous Biomanufacturing with E. coli -- 1.4.1 Optimization of Plant Usage Using CBM with E. coli -- 1.4.2 Reasons Why CBM with E. coli Is Not State of the Art (Yet) -- 1.4.2.1 Formation of Subpopulation Following Genotypic Diversification -- 1.4.2.2 Formation of Subpopulation Following Phenotypic Diversification -- 1.4.2.3 Is Genomic Integration of the Target Protein an Enabler for CBM with E. coli? -- 1.4.3 Solutions to Overcome the Formation of Subpopulations and How to Realize CBM with E. coli in the Future -- 1.5 Conclusion and Outlook -- References -- Chapter 2 Control of Continuous Manufacturing Processes for Production of Monoclonal Antibodies -- 2.1 Introduction.
2.2 Control of Upstream Mammalian Bioreactor for Continuous Production of mAbs -- 2.3 Integration Between Upstream and Downstream in Continuous Production of mAbs -- 2.3.1 Continuous Clarification as a Bridge Between Continuous Upstream and Downstream -- 2.3.2 Considerations for Process Integration -- 2.4 Control of Continuous Downstream Unit Operations in mAb Manufacturing -- 2.4.1 Control of Continuous Dead‐End Filtration -- 2.4.2 Control of Continuous Chromatography -- 2.4.3 Control of Continuous Viral Inactivation -- 2.4.4 Control of Continuous Precipitation -- 2.4.5 Control of Continuous Formulation -- 2.5 Integration Between Adjacent Unit Operations Using Surge Tanks -- 2.6 Emerging Approaches for High‐Level Monitoring and Control of Continuous Bioprocesses -- 2.6.1 Artificial Intelligence (AI) and Machine Learning (ML) Control -- 2.6.2 Statistical Process Control -- 2.6.3 Process Digitalization -- 2.7 Conclusions -- References -- Chapter 3 Artificial Intelligence and the Control of Continuous Manufacturing -- 3.1 Introduction -- 3.2 Continuous Monitoring and Validation -- 3.3 Choosing Other Control Charts -- 3.4 Information Awareness -- 3.5 Management and Personnel -- References -- Part II Intensified Biomanufacturing -- Chapter 4 Bioprocess Intensification: Technologies and Goals -- 4.1 Introduction -- 4.2 Bioprocess Intensification -- 4.2.1 Definition -- 4.2.2 New Directions -- 4.2.3 Sustainability Synergy -- 4.3 Intensification Techniques -- 4.3.1 Enterprise Resource Management -- 4.3.2 Synthetic Biology and Genetic Engineering -- 4.3.3 New Expression Systems -- 4.3.4 Bioprocess Optimization -- 4.3.5 Bioprocess Simplification -- 4.3.6 Continuous Bioprocessing -- 4.4 Materials -- 4.4.1 Media Optimization -- 4.4.2 Variability -- 4.5 Digital Biomanufacturing -- 4.5.1 Data -- 4.5.2 Bioprocess Control -- 4.5.3 Digital Twins.
4.5.4 Artificial Intelligence -- 4.5.5 Cloud/Edge Computing -- 4.6 Bioprocess Modeling -- 4.7 Automation and Autonomation -- 4.8 Bioprocess Monitoring -- 4.9 Improved Process and Product Development -- 4.9.1 Design of Experiments -- 4.9.2 QbD and PAT -- 4.9.3 High‐Throughput Systems -- 4.9.4 Methods -- 4.9.5 Commercialized Systems -- 4.10 Advanced Process Control -- 4.11 Bioreactor Design -- 4.12 Single‐Use Systems -- 4.13 Facilities -- 4.14 Conclusion -- Acknowledgment -- References -- Chapter 5 Process Intensification Based on Disposable Solutions as First Step Toward Continuous Processing -- 5.1 Introduction -- 5.1.1 Theory and Practice of Process Intensification -- 5.1.2 Current Bioprocessing -- 5.1.3 General Aspects of Disposables -- 5.2 Technical Solutions -- 5.2.1 Process Development -- 5.2.2 Upstream Processing Unit Operations -- 5.2.2.1 High‐Density, Large‐Volume Cell Banking in Bags -- 5.2.2.2 Seed Train Intensification -- 5.2.2.3 Cell Retention and Harvest -- 5.2.3 Downstream Processing Unit Operations -- 5.2.3.1 Depth Filtration -- 5.2.3.2 In‐line Virus Inactivation -- 5.2.3.3 In‐line Buffer Blending and Dilution -- 5.2.3.4 Chromatography -- 5.2.3.5 Tangential Flow Filtration -- 5.2.3.6 Drug Substance Freezing -- 5.3 Process Analytical Technology and Sensors -- 5.3.1 Sensors for USP Applications -- 5.3.2 Sensors for DSP Applications -- 5.4 Conclusions -- 5.4.1 Transition from Traditional to Intensified Processes -- 5.4.2 Impact on Cost -- 5.4.3 Influence on Time -- References -- Chapter 6 Single‐Use Continuous Manufacturing and Process Intensification for Production of Affordable Biological Drugs -- 6.1 Background -- 6.2 State of Upstream and Downstream Processes -- 6.2.1 Sizing Upstream Process -- 6.2.2 Sizing Downstream Process -- 6.2.3 Continuous Process Retrofit into the Existing Facility -- 6.2.3.1 Upstream Process.
6.2.3.2 Downstream Process -- 6.2.4 Learning from Chemical Industry -- 6.3 Cell Line Development and Manufacturing Role -- 6.3.1 Speeding Up Upstream and Downstream Development -- 6.3.2 The State of Manufacturing -- 6.4 Process Integration and Intensification -- 6.4.1 Intensification of a Multiproduct Perfusion Platform -- 6.4.2 Upstream Process Intensification Using Perfusion Process -- 6.5 Process Intensification and Integration in Continuous Manufacturing -- 6.6 Single‐Use Manufacturing to Maximize Efficiency -- 6.6.1 The Benefits of SUT in the New Era of Biomanufacturing -- 6.6.2 Managing an SUT Cost Profile -- 6.6.3 In‐Line Conditioning (ILC) -- 6.6.4 Impact of Single‐Use Strategy on Manufacturing Cost of Goods -- 6.6.5 Limitations of SUT -- 6.7 Process Economy -- 6.7.1 Biopharma Market Dynamics -- 6.7.2 Management of the Key Risks of a Budding Market -- 6.8 Future Perspective -- References -- Part III Digital Biomanufacturing -- Chapter 7 Process Intensification and Industry 4.0: Mutually Enabling Trends -- 7.1 Introduction -- 7.2 Enabling Technologies for Process Intensification -- 7.2.1 Process Intensification in Biomanufacturing -- 7.2.2 Process Intensification in Cell Culture -- 7.2.3 Process Intensification in Downstream Processing -- 7.2.4 Process Integration: Manufacturing Platforms -- 7.2.5 The Two Elephants in the (Clean) Room -- 7.3 Digital Opportunities in Process Development -- 7.4 Digital Opportunities in Manufacturing -- 7.5 Digital Opportunities in Quality Assurance -- 7.6 Considerations -- 7.6.1 Challenges -- 7.6.2 Gene Therapy -- 7.7 Conclusions -- References -- Chapter 8 Consistent Value Creation from Bioprocess Data with Customized Algorithms: Opportunities Beyond Multivariate Analysis -- 8.1 Motivation -- 8.2 Modeling of Process Dynamics -- 8.2.1 Hybrid Models -- 8.2.2 Conclusion.
8.3 Predictive Models for Critical Quality Attributes -- 8.3.1 Historical Product Quality Prediction -- 8.3.2 Synergistic Prediction of Process and Product Quality -- 8.4 Extrapolation and Process Optimization -- 8.5 Bioprocess Monitoring Using Soft Sensors -- 8.5.1 Static Soft Sensor -- 8.5.2 Dynamic Soft Sensors -- 8.5.3 Concluding Remarks -- 8.6 Scale‐Up and Scale‐Down -- 8.6.1 Differences Between Lab and Manufacturing Scales -- 8.6.2 Scale‐Up -- 8.6.3 Scale‐Down -- 8.6.4 Conclusions -- 8.7 Digitalization as an Enabler for Continuous Manufacturing -- References -- Chapter 9 Digital Twins for Continuous Biologics Manufacturing -- 9.1 Introduction -- 9.2 Digital Twins in Continuous Biomanufacturing -- 9.2.1 USP Fed Batch and Perfusion -- 9.2.2 Capture, LLE, Cell Separation, and Clarification -- 9.2.2.1 Fluid Dynamics (Red) -- 9.2.2.2 Phase Equilibrium (Blue) -- 9.2.2.3 Kinetics (Green) -- 9.2.3 UF/DF, SPTFF for Concentration, and Buffer Exchange -- 9.2.4 Precipitation/Crystallization -- 9.2.5 Chromatography and Membrane Adsorption -- 9.2.5.1 General Rate Model Chromatography -- 9.2.5.2 SEC -- 9.2.5.3 Adsorption Mechanism -- 9.2.5.4 IEX‐SMA -- 9.2.5.5 HIC‐SMA -- 9.2.5.6 Modified Mixed‐Mode SMA -- 9.2.5.7 Modified HIC‐SMA Process Model Exemplification by mab Purification -- 9.2.5.8 Model Parameter Determination -- 9.2.5.9 Phase Equilibrium Isotherms -- 9.2.5.10 Mass Transfer Kinetics -- 9.2.6 Lyophilization -- 9.2.6.1 Thermal Conductivity of the Vial -- 9.2.6.2 Product Resistance -- 9.2.6.3 Product Temperature -- 9.2.6.4 Water Properties -- 9.3 Process Integration and Demonstration -- 9.3.1 USP Fed Batch and Perfusion -- 9.3.2 Capture, LLE, Cell Separation, and Clarification -- 9.3.3 UF/DF, SPTFF for Concentration, and Buffer Exchange -- 9.3.4 Precipitation/Crystallization -- 9.3.5 Chromatography and Membrane Adsorption -- 9.3.6 Lyophilization.
9.3.7 Comparison Between Conceptual Process Design and Experimental Data.
Record Nr. UNINA-9910830362603321
Weinheim, Germany : , : Wiley-VCH, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Production of recombinant proteins [[electronic resource] ] : novel microbial and eukaryotic expression systems / / edited by Gerd Gellissen
Production of recombinant proteins [[electronic resource] ] : novel microbial and eukaryotic expression systems / / edited by Gerd Gellissen
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2005
Descrizione fisica 1 online resource (432 p.)
Disciplina 660.63
Altri autori (Persone) GellissenGerd
Soggetto topico Recombinant proteins
Recombinant microorganisms
Genetic vectors
Soggetto genere / forma Electronic books.
ISBN 1-280-51972-X
9786610519729
3-527-60367-0
3-527-60441-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Production of Recombinant Proteins; Preface; Foreword; Contents; List of Contributors; 1 Key and Criteria to the Selection of an Expression Platform; 2 Escherichia coli; 2.1 Introduction; 2.2 Strains, Genome, and Cultivation; 2.3 Expression Vectors; 2.3.1 Replication of pMB1-derived Vectors; 2.3.2 Plasmid Partitioning; 2.3.3 Genome Engineering; 2.3.4 E. coli Promoters; 2.4 Regulation of Gene Expression; 2.4.1 Negative Control; 2.4.2 Positive Control; 2.4.2.1 L-Arabinose Operon; 2.4.2.2 L-Rhamnose Operon; 2.5 Transcription and Translation; 2.5.1 Translation Initiation; 2.5.2 Codon Usage
2.5.3 Translation Termination2.5.4 Transcription Termination and mRNA Stability; 2.6 Protein Production; 2.6.1 Inclusion Body Formation; 2.6.1.1 Chaperones as Facilitators of Folding; 2.6.1.2 Fusion Protein Technology; 2.6.2 Methionine Processing; 2.6.3 Secretion into the Periplasm; 2.6.4 Disulfide Bond Formation and Folding; 2.6.5 Twin Arginine Translocation (TAT) of Folded Proteins; 2.6.6 Disulfide Bond Formation in the Cytoplasm; 2.6.7 Cell Surface Display and Secretion across the Outer Membrane; 2.7 Examples of Products and Processes; 2.8 Conclusions and Future Perspectives; Appendix
References3 Pseudomonas fluorescens; 3.1 Introduction; 3.2 Biology of Pseudomonas fluorescens; 3.3 History and Taxonomy of Pseudomonas fluorescens Strain Biovar I MB101; 3.4 Cultivation; 3.5 Genomics and Functional Genomics of P. fluorescens Strain MB101; 3.6 Core Expression Platform for Heterologous Proteins; 3.6.1 Antibiotic-free Plasmids using pyrF and proC; 3.6.2 Gene Deletion Strategy and Re-usable Markers; 3.6.3 Periplasmic Secretion and Use of Transposomes; 3.6.4 Alternative Expression Systems: Anthranilate and Benzoate-inducible Promoters
3.7 Production of Heterologous Proteins in P. fluorescens3.7.1 Pharmaceutical Proteins; 3.7.2 Industrial Enzymes; 3.7.3 Agricultural Proteins; 3.8 Conclusions; Appendix; References; 4 Staphylococcus carnosus and other Gram-positive Bacteria; 4.1 Introduction; 4.2 Major Protein Export Routes in Gram-positive Bacteria; 4.2.1 The General Secretion (Sec) Pathway; 4.2.2 The Twin-Arginine Translocation (Tat) Pathway; 4.2.3 Secretion Signals; 4.3 Extracytosolic Protein Folding; 4.4 The Cell Wall as a Barrier for the Secretion of Heterologous Proteins
4.5 Degradation of Exported Proteins by Cell-associated and Secreted Proteases4.6 Staphylococcus carnosus; 4.6.1 General Description; 4.6.2 Microbiological and Molecular Biological Tools; 4.6.3 S. carnosus as Host Organism for the Analysis of Staphylococcal-related Pathogenicity Aspects; 4.6.4 Secretory Production of Heterologous Proteins by S. carnosus; 4.6.4.1 The Staphylococcus hyicus Lipase: Secretory Signals and Heterologous Expression in S. carnosus; 4.6.4.2 Use of the Pre-pro-part of the S. hyicus Lipase for the Secretion of Heterologous Proteins in S. carnosus
4.6.4.3 Process Development for the Secretory Production of a Human Calcitonin Precursor Fusion Protein by S. carnosus
Record Nr. UNINA-9910144563203321
Weinheim, : Wiley-VCH, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Production of recombinant proteins [[electronic resource] ] : novel microbial and eukaryotic expression systems / / edited by Gerd Gellissen
Production of recombinant proteins [[electronic resource] ] : novel microbial and eukaryotic expression systems / / edited by Gerd Gellissen
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2005
Descrizione fisica 1 online resource (432 p.)
Disciplina 660.63
Altri autori (Persone) GellissenGerd
Soggetto topico Recombinant proteins
Recombinant microorganisms
Genetic vectors
ISBN 1-280-51972-X
9786610519729
3-527-60367-0
3-527-60441-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Production of Recombinant Proteins; Preface; Foreword; Contents; List of Contributors; 1 Key and Criteria to the Selection of an Expression Platform; 2 Escherichia coli; 2.1 Introduction; 2.2 Strains, Genome, and Cultivation; 2.3 Expression Vectors; 2.3.1 Replication of pMB1-derived Vectors; 2.3.2 Plasmid Partitioning; 2.3.3 Genome Engineering; 2.3.4 E. coli Promoters; 2.4 Regulation of Gene Expression; 2.4.1 Negative Control; 2.4.2 Positive Control; 2.4.2.1 L-Arabinose Operon; 2.4.2.2 L-Rhamnose Operon; 2.5 Transcription and Translation; 2.5.1 Translation Initiation; 2.5.2 Codon Usage
2.5.3 Translation Termination2.5.4 Transcription Termination and mRNA Stability; 2.6 Protein Production; 2.6.1 Inclusion Body Formation; 2.6.1.1 Chaperones as Facilitators of Folding; 2.6.1.2 Fusion Protein Technology; 2.6.2 Methionine Processing; 2.6.3 Secretion into the Periplasm; 2.6.4 Disulfide Bond Formation and Folding; 2.6.5 Twin Arginine Translocation (TAT) of Folded Proteins; 2.6.6 Disulfide Bond Formation in the Cytoplasm; 2.6.7 Cell Surface Display and Secretion across the Outer Membrane; 2.7 Examples of Products and Processes; 2.8 Conclusions and Future Perspectives; Appendix
References3 Pseudomonas fluorescens; 3.1 Introduction; 3.2 Biology of Pseudomonas fluorescens; 3.3 History and Taxonomy of Pseudomonas fluorescens Strain Biovar I MB101; 3.4 Cultivation; 3.5 Genomics and Functional Genomics of P. fluorescens Strain MB101; 3.6 Core Expression Platform for Heterologous Proteins; 3.6.1 Antibiotic-free Plasmids using pyrF and proC; 3.6.2 Gene Deletion Strategy and Re-usable Markers; 3.6.3 Periplasmic Secretion and Use of Transposomes; 3.6.4 Alternative Expression Systems: Anthranilate and Benzoate-inducible Promoters
3.7 Production of Heterologous Proteins in P. fluorescens3.7.1 Pharmaceutical Proteins; 3.7.2 Industrial Enzymes; 3.7.3 Agricultural Proteins; 3.8 Conclusions; Appendix; References; 4 Staphylococcus carnosus and other Gram-positive Bacteria; 4.1 Introduction; 4.2 Major Protein Export Routes in Gram-positive Bacteria; 4.2.1 The General Secretion (Sec) Pathway; 4.2.2 The Twin-Arginine Translocation (Tat) Pathway; 4.2.3 Secretion Signals; 4.3 Extracytosolic Protein Folding; 4.4 The Cell Wall as a Barrier for the Secretion of Heterologous Proteins
4.5 Degradation of Exported Proteins by Cell-associated and Secreted Proteases4.6 Staphylococcus carnosus; 4.6.1 General Description; 4.6.2 Microbiological and Molecular Biological Tools; 4.6.3 S. carnosus as Host Organism for the Analysis of Staphylococcal-related Pathogenicity Aspects; 4.6.4 Secretory Production of Heterologous Proteins by S. carnosus; 4.6.4.1 The Staphylococcus hyicus Lipase: Secretory Signals and Heterologous Expression in S. carnosus; 4.6.4.2 Use of the Pre-pro-part of the S. hyicus Lipase for the Secretion of Heterologous Proteins in S. carnosus
4.6.4.3 Process Development for the Secretory Production of a Human Calcitonin Precursor Fusion Protein by S. carnosus
Record Nr. UNINA-9910831061403321
Weinheim, : Wiley-VCH, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Production of recombinant proteins [[electronic resource] ] : novel microbial and eukaryotic expression systems / / edited by Gerd Gellissen
Production of recombinant proteins [[electronic resource] ] : novel microbial and eukaryotic expression systems / / edited by Gerd Gellissen
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2005
Descrizione fisica 1 online resource (432 p.)
Disciplina 660.63
Altri autori (Persone) GellissenGerd
Soggetto topico Recombinant proteins
Recombinant microorganisms
Genetic vectors
ISBN 1-280-51972-X
9786610519729
3-527-60367-0
3-527-60441-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Production of Recombinant Proteins; Preface; Foreword; Contents; List of Contributors; 1 Key and Criteria to the Selection of an Expression Platform; 2 Escherichia coli; 2.1 Introduction; 2.2 Strains, Genome, and Cultivation; 2.3 Expression Vectors; 2.3.1 Replication of pMB1-derived Vectors; 2.3.2 Plasmid Partitioning; 2.3.3 Genome Engineering; 2.3.4 E. coli Promoters; 2.4 Regulation of Gene Expression; 2.4.1 Negative Control; 2.4.2 Positive Control; 2.4.2.1 L-Arabinose Operon; 2.4.2.2 L-Rhamnose Operon; 2.5 Transcription and Translation; 2.5.1 Translation Initiation; 2.5.2 Codon Usage
2.5.3 Translation Termination2.5.4 Transcription Termination and mRNA Stability; 2.6 Protein Production; 2.6.1 Inclusion Body Formation; 2.6.1.1 Chaperones as Facilitators of Folding; 2.6.1.2 Fusion Protein Technology; 2.6.2 Methionine Processing; 2.6.3 Secretion into the Periplasm; 2.6.4 Disulfide Bond Formation and Folding; 2.6.5 Twin Arginine Translocation (TAT) of Folded Proteins; 2.6.6 Disulfide Bond Formation in the Cytoplasm; 2.6.7 Cell Surface Display and Secretion across the Outer Membrane; 2.7 Examples of Products and Processes; 2.8 Conclusions and Future Perspectives; Appendix
References3 Pseudomonas fluorescens; 3.1 Introduction; 3.2 Biology of Pseudomonas fluorescens; 3.3 History and Taxonomy of Pseudomonas fluorescens Strain Biovar I MB101; 3.4 Cultivation; 3.5 Genomics and Functional Genomics of P. fluorescens Strain MB101; 3.6 Core Expression Platform for Heterologous Proteins; 3.6.1 Antibiotic-free Plasmids using pyrF and proC; 3.6.2 Gene Deletion Strategy and Re-usable Markers; 3.6.3 Periplasmic Secretion and Use of Transposomes; 3.6.4 Alternative Expression Systems: Anthranilate and Benzoate-inducible Promoters
3.7 Production of Heterologous Proteins in P. fluorescens3.7.1 Pharmaceutical Proteins; 3.7.2 Industrial Enzymes; 3.7.3 Agricultural Proteins; 3.8 Conclusions; Appendix; References; 4 Staphylococcus carnosus and other Gram-positive Bacteria; 4.1 Introduction; 4.2 Major Protein Export Routes in Gram-positive Bacteria; 4.2.1 The General Secretion (Sec) Pathway; 4.2.2 The Twin-Arginine Translocation (Tat) Pathway; 4.2.3 Secretion Signals; 4.3 Extracytosolic Protein Folding; 4.4 The Cell Wall as a Barrier for the Secretion of Heterologous Proteins
4.5 Degradation of Exported Proteins by Cell-associated and Secreted Proteases4.6 Staphylococcus carnosus; 4.6.1 General Description; 4.6.2 Microbiological and Molecular Biological Tools; 4.6.3 S. carnosus as Host Organism for the Analysis of Staphylococcal-related Pathogenicity Aspects; 4.6.4 Secretory Production of Heterologous Proteins by S. carnosus; 4.6.4.1 The Staphylococcus hyicus Lipase: Secretory Signals and Heterologous Expression in S. carnosus; 4.6.4.2 Use of the Pre-pro-part of the S. hyicus Lipase for the Secretion of Heterologous Proteins in S. carnosus
4.6.4.3 Process Development for the Secretory Production of a Human Calcitonin Precursor Fusion Protein by S. carnosus
Record Nr. UNINA-9910841595403321
Weinheim, : Wiley-VCH, c2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Production of recombinant proteins : novel microbial and eukaryotic expression systems / edited by Gerd Gellissen
Production of recombinant proteins : novel microbial and eukaryotic expression systems / edited by Gerd Gellissen
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2005
Descrizione fisica XXV, 404 p. : ill. ; 25 cm.
Disciplina 660.6
660.63
Soggetto topico Ingegneria biochimica
ISBN 3527310363
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISANNIO-RMS2014298
Weinheim, : Wiley-VCH, c2005
Materiale a stampa
Lo trovi qui: Univ. del Sannio
Opac: Controlla la disponibilità qui
Protein engineering / Peter C. E. Moody and Anthony J. Wilkinson
Protein engineering / Peter C. E. Moody and Anthony J. Wilkinson
Autore Moody, Peter C. E.
Pubbl/distr/stampa Oxford, : IRL ; Oxford university, c1990
Descrizione fisica X, 85 p. : ill. (alcune a col.) ; 23 cm.
Disciplina 572.6(Proteine)
660.63(Biochimica industriale. Ingegneria biochimica)
Altri autori (Persone) Wilkinson, Anthony J.
ISBN 01-996319-4-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-SUN0057821
Moody, Peter C. E.  
Oxford, : IRL ; Oxford university, c1990
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Protein engineering / Peter C. E. Moody and Anthony J. Wilkinson
Protein engineering / Peter C. E. Moody and Anthony J. Wilkinson
Autore Moody, Peter C. E.
Pubbl/distr/stampa Oxford, : IRL ; Oxford university, c1990
Descrizione fisica X, 85 p. : ill. (alcune a col.) ; 23 cm
Disciplina 572.6(Proteine)
660.63(Biochimica industriale. Ingegneria biochimica)
Altri autori (Persone) Wilkinson, Anthony J.
ISBN 01-996319-4-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0057821
Moody, Peter C. E.  
Oxford, : IRL ; Oxford university, c1990
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Protein engineering : tools and applications / / edited by Huimin Zhao
Protein engineering : tools and applications / / edited by Huimin Zhao
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , [2021]
Descrizione fisica 1 online resource (431 pages)
Disciplina 660.63
Collana Advanced biotechnology
Soggetto topico Protein engineering
Soggetto genere / forma Electronic books.
ISBN 3-527-81509-0
3-527-81512-0
3-527-81511-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910554849903321
Weinheim, Germany : , : Wiley-VCH, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui