Vai al contenuto principale della pagina
| Autore: |
Reichel Wolfgang
|
| Titolo: |
Uniqueness Theorems for Variational Problems by the Method of Transformation Groups / / by Wolfgang Reichel
|
| Pubblicazione: | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2004 |
| Edizione: | 1st ed. 2004. |
| Descrizione fisica: | 1 online resource (XIV, 158 p.) |
| Disciplina: | 512 |
| Soggetto topico: | Calculus of variations |
| Differential equations, Partial | |
| Calculus of Variations and Optimal Control; Optimization | |
| Partial Differential Equations | |
| Note generali: | Bibliographic Level Mode of Issuance: Monograph |
| Nota di bibliografia: | Includes bibliographical references (pages [144]-149) and index. |
| Nota di contenuto: | Introduction -- Uniqueness of Critical Points (I) -- Uniqueness of Citical Pints (II) -- Variational Problems on Riemannian Manifolds -- Scalar Problems in Euclidean Space -- Vector Problems in Euclidean Space -- Fréchet-Differentiability -- Lipschitz-Properties of ge and omegae. |
| Sommario/riassunto: | A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity. |
| Titolo autorizzato: | Uniqueness theorems for variational problems by the method of transformation groups ![]() |
| ISBN: | 3-540-40915-7 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910144618903321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |