1.

Record Nr.

UNINA9910144618903321

Autore

Reichel Wolfgang

Titolo

Uniqueness Theorems for Variational Problems by the Method of Transformation Groups / / by Wolfgang Reichel

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2004

ISBN

3-540-40915-7

Edizione

[1st ed. 2004.]

Descrizione fisica

1 online resource (XIV, 158 p.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 1841

Disciplina

512

Soggetti

Calculus of variations

Differential equations, Partial

Calculus of Variations and Optimal Control; Optimization

Partial Differential Equations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references (pages [144]-149) and index.

Nota di contenuto

Introduction -- Uniqueness of Critical Points (I) -- Uniqueness of Citical Pints (II) -- Variational Problems on Riemannian Manifolds -- Scalar Problems in Euclidean Space -- Vector Problems in Euclidean Space -- Fréchet-Differentiability -- Lipschitz-Properties of ge and omegae.

Sommario/riassunto

A classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.