LEADER 03330nam 22006375 450 001 9910144618903321 005 20200706122555.0 010 $a3-540-40915-7 024 7 $a10.1007/b96984 035 $a(CKB)1000000000231194 035 $a(SSID)ssj0000327497 035 $a(PQKBManifestationID)11245709 035 $a(PQKBTitleCode)TC0000327497 035 $a(PQKBWorkID)10299454 035 $a(PQKB)11656651 035 $a(DE-He213)978-3-540-40915-1 035 $a(MiAaPQ)EBC6285499 035 $a(MiAaPQ)EBC5592030 035 $a(Au-PeEL)EBL5592030 035 $a(OCoLC)55663802 035 $a(PPN)155166832 035 $a(EXLCZ)991000000000231194 100 $a20121227d2004 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aUniqueness Theorems for Variational Problems by the Method of Transformation Groups /$fby Wolfgang Reichel 205 $a1st ed. 2004. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2004. 215 $a1 online resource (XIV, 158 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v1841 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-21839-4 320 $aIncludes bibliographical references (pages [144]-149) and index. 327 $aIntroduction -- Uniqueness of Critical Points (I) -- Uniqueness of Citical Pints (II) -- Variational Problems on Riemannian Manifolds -- Scalar Problems in Euclidean Space -- Vector Problems in Euclidean Space -- Fréchet-Differentiability -- Lipschitz-Properties of ge and omegae. 330 $aA classical problem in the calculus of variations is the investigation of critical points of functionals {\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\cal L} and the underlying space V does {\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v1841 606 $aCalculus of variations 606 $aDifferential equations, Partial 606 $aCalculus of Variations and Optimal Control; Optimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26016 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 615 0$aCalculus of variations. 615 0$aDifferential equations, Partial. 615 14$aCalculus of Variations and Optimal Control; Optimization. 615 24$aPartial Differential Equations. 676 $a512 700 $aReichel$b Wolfgang$4aut$4http://id.loc.gov/vocabulary/relators/aut$0214785 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910144618903321 996 $aUniqueness theorems for variational problems by the method of transformation groups$9262667 997 $aUNINA