Vai al contenuto principale della pagina

Harmonic and Applied Analysis : From Radon Transforms to Machine Learning / / edited by Filippo De Mari, Ernesto De Vito



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Harmonic and Applied Analysis : From Radon Transforms to Machine Learning / / edited by Filippo De Mari, Ernesto De Vito Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2021
Edizione: 1st ed. 2021.
Descrizione fisica: 1 online resource (316 pages)
Disciplina: 006.31
Soggetto topico: Harmonic analysis
Geometry, Differential
Mathematical optimization
Artificial intelligence - Data processing
Signal processing
Abstract Harmonic Analysis
Differential Geometry
Optimization
Data Science
Signal, Speech and Image Processing
Persona (resp. second.): De MariFilippo
De VitoErnesto
Nota di contenuto: Bartolucci, F., De Mari, F., Monti, M., Unitarization of the Horocyclic Radon Transform on Symmetric Spaces -- Maurer, A., Entropy and Concentration.-Alaifari, R., Ill-Posed Problems: From Linear to Non-Linear and Beyond -- Salzo, S., Villa, S., Proximal Gradient Methods for Machine Learning and Imaging -- De Vito, E., Rosasco, L., Rudi, A., Regularization: From Inverse Problems to Large Scale Machine Learning.
Sommario/riassunto: Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging. .
Titolo autorizzato: Harmonic and Applied Analysis  Visualizza cluster
ISBN: 3-030-86664-5
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910513600403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Applied and Numerical Harmonic Analysis, . 2296-5017