1.

Record Nr.

UNINA990002869210403321

Autore

Carota, C.

Titolo

Robust bayesian analysis given priors on partition sets / C. Carota, F. Ruggieri

Pubbl/distr/stampa

Milano : CNR, 1993

Descrizione fisica

15 p. ; 29 cm

Collana

Preprint / CNR - IAMI ; 93.1

Altri autori (Persone)

Ruggeri, F.

Disciplina

001.4

Locazione

MAS

Collocazione

MXXXII-C-45

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910513600403321

Titolo

Harmonic and Applied Analysis : From Radon Transforms to Machine Learning / / edited by Filippo De Mari, Ernesto De Vito

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2021

ISBN

3-030-86664-5

Edizione

[1st ed. 2021.]

Descrizione fisica

1 online resource (316 pages)

Collana

Applied and Numerical Harmonic Analysis, , 2296-5017

Disciplina

006.31

Soggetti

Harmonic analysis

Geometry, Differential

Mathematical optimization

Artificial intelligence - Data processing

Signal processing

Abstract Harmonic Analysis

Differential Geometry

Optimization

Data Science

Signal, Speech and Image Processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Bartolucci, F., De Mari, F., Monti, M., Unitarization of the Horocyclic Radon Transform on Symmetric Spaces -- Maurer, A., Entropy and Concentration.-Alaifari, R., Ill-Posed Problems: From Linear to Non-Linear and Beyond -- Salzo, S., Villa, S., Proximal Gradient Methods for Machine Learning and Imaging -- De Vito, E., Rosasco, L., Rudi, A., Regularization: From Inverse Problems to Large Scale Machine Learning.

Sommario/riassunto

Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more



advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging. .