LEADER 03543nam 22006975 450 001 9910513600403321 005 20251113192616.0 010 $a3-030-86664-5 024 7 $a10.1007/978-3-030-86664-8 035 $a(MiAaPQ)EBC6826347 035 $a(Au-PeEL)EBL6826347 035 $a(CKB)20133871300041 035 $a(OCoLC)1291316030 035 $a(PPN)259385786 035 $a(DE-He213)978-3-030-86664-8 035 $a(EXLCZ)9920133871300041 100 $a20211213d2021 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aHarmonic and Applied Analysis $eFrom Radon Transforms to Machine Learning /$fedited by Filippo De Mari, Ernesto De Vito 205 $a1st ed. 2021. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2021. 215 $a1 online resource (316 pages) 225 1 $aApplied and Numerical Harmonic Analysis,$x2296-5017 311 08$aPrint version: De Mari, Filippo Harmonic and Applied Analysis Cham : Springer International Publishing AG,c2022 9783030866631 327 $aBartolucci, F., De Mari, F., Monti, M., Unitarization of the Horocyclic Radon Transform on Symmetric Spaces -- Maurer, A., Entropy and Concentration.-Alaifari, R., Ill-Posed Problems: From Linear to Non-Linear and Beyond -- Salzo, S., Villa, S., Proximal Gradient Methods for Machine Learning and Imaging -- De Vito, E., Rosasco, L., Rudi, A., Regularization: From Inverse Problems to Large Scale Machine Learning. 330 $aDeep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging. . 410 0$aApplied and Numerical Harmonic Analysis,$x2296-5017 606 $aHarmonic analysis 606 $aGeometry, Differential 606 $aMathematical optimization 606 $aArtificial intelligence$xData processing 606 $aSignal processing 606 $aAbstract Harmonic Analysis 606 $aDifferential Geometry 606 $aOptimization 606 $aData Science 606 $aSignal, Speech and Image Processing 615 0$aHarmonic analysis. 615 0$aGeometry, Differential. 615 0$aMathematical optimization. 615 0$aArtificial intelligence$xData processing. 615 0$aSignal processing. 615 14$aAbstract Harmonic Analysis. 615 24$aDifferential Geometry. 615 24$aOptimization. 615 24$aData Science. 615 24$aSignal, Speech and Image Processing. 676 $a006.31 702 $aDe Mari$b Filippo 702 $aDe Vito$b Ernesto 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910513600403321 996 $aHarmonic and Applied Analysis$92564285 997 $aUNINA