Vai al contenuto principale della pagina
| Autore: |
Mokhlesabadifarahani Bita
|
| Titolo: |
EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction / / by Bita Mokhlesabadifarahani, Vinit Kumar Gunjan
|
| Pubblicazione: | Singapore : , : Springer Singapore : , : Imprint : Springer, , 2015 |
| Edizione: | 1st ed. 2015. |
| Descrizione fisica: | 1 online resource (43 p.) |
| Disciplina: | 502.85 |
| 570285 | |
| 610.28 | |
| 614.1 | |
| 616.7 | |
| 617.03 | |
| 620 | |
| 621.3848 | |
| Soggetto topico: | Biomedical engineering |
| Orthopedics | |
| Forensic sciences | |
| Bioinformatics | |
| Medical informatics | |
| Rehabilitation | |
| Biomedical Engineering and Bioengineering | |
| Forensic Science | |
| Computational Biology/Bioinformatics | |
| Health Informatics | |
| Persona (resp. second.): | GunjanVinit Kumar |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Introduction to EMG Technique and Feature Extraction -- Methodology for working with EMG dataset -- Results -- Conclusions and Inferences of Present Study. |
| Sommario/riassunto: | Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used. |
| Titolo autorizzato: | EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction ![]() |
| ISBN: | 981-287-320-1 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910299687003321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |