1.

Record Nr.

UNINA9910141736003321

Titolo

Jane Eyre, ancora / / a cura di Laura Di Michele

Pubbl/distr/stampa

2012

Edizione

[1. ed. italiana.]

Descrizione fisica

171 p. ; ; 24 cm

Collana

Domini

Critica e letteratura, , 1972-0645 ; ; 112

Altri autori (Persone)

Di MicheleLaura

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

2.

Record Nr.

UNINA9910299687003321

Autore

Mokhlesabadifarahani Bita

Titolo

EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction / / by Bita Mokhlesabadifarahani, Vinit Kumar Gunjan

Pubbl/distr/stampa

Singapore : , : Springer Singapore : , : Imprint : Springer, , 2015

ISBN

981-287-320-1

Edizione

[1st ed. 2015.]

Descrizione fisica

1 online resource (43 p.)

Collana

SpringerBriefs in Forensic and Medical Bioinformatics, , 2196-8845

Disciplina

502.85

570285

610.28

614.1

616.7

617.03

620

621.3848

Soggetti

Biomedical engineering

Orthopedics

Forensic sciences

Bioinformatics

Medical informatics

Rehabilitation



Biomedical Engineering and Bioengineering

Forensic Science

Computational Biology/Bioinformatics

Health Informatics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Introduction to EMG Technique and Feature Extraction -- Methodology forĀ  working with EMG dataset -- Results -- Conclusions and Inferences of Present Study.

Sommario/riassunto

Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.