LEADER 04239nam 22008655 450 001 9910299687003321 005 20200702052029.0 010 $a981-287-320-1 024 7 $a10.1007/978-981-287-320-0 035 $a(CKB)3710000000357008 035 $a(EBL)1974162 035 $a(SSID)ssj0001452084 035 $a(PQKBManifestationID)11889955 035 $a(PQKBTitleCode)TC0001452084 035 $a(PQKBWorkID)11478732 035 $a(PQKB)11681694 035 $a(DE-He213)978-981-287-320-0 035 $a(MiAaPQ)EBC1974162 035 $a(PPN)184495342 035 $a(EXLCZ)993710000000357008 100 $a20150210d2015 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction /$fby Bita Mokhlesabadifarahani, Vinit Kumar Gunjan 205 $a1st ed. 2015. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2015. 215 $a1 online resource (43 p.) 225 1 $aSpringerBriefs in Forensic and Medical Bioinformatics,$x2196-8845 300 $aDescription based upon print version of record. 311 $a981-287-319-8 320 $aIncludes bibliographical references. 327 $aIntroduction to EMG Technique and Feature Extraction -- Methodology for  working with EMG dataset -- Results -- Conclusions and Inferences of Present Study. 330 $aNeuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used. 410 0$aSpringerBriefs in Forensic and Medical Bioinformatics,$x2196-8845 606 $aBiomedical engineering 606 $aOrthopedics 606 $aForensic sciences 606 $aBioinformatics 606 $aMedical informatics 606 $aRehabilitation 606 $aBiomedical Engineering and Bioengineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T2700X 606 $aOrthopedics$3https://scigraph.springernature.com/ontologies/product-market-codes/H45000 606 $aForensic Science$3https://scigraph.springernature.com/ontologies/product-market-codes/B23000 606 $aComputational Biology/Bioinformatics$3https://scigraph.springernature.com/ontologies/product-market-codes/I23050 606 $aHealth Informatics$3https://scigraph.springernature.com/ontologies/product-market-codes/I23060 606 $aRehabilitation$3https://scigraph.springernature.com/ontologies/product-market-codes/H55006 615 0$aBiomedical engineering. 615 0$aOrthopedics. 615 0$aForensic sciences. 615 0$aBioinformatics. 615 0$aMedical informatics. 615 0$aRehabilitation. 615 14$aBiomedical Engineering and Bioengineering. 615 24$aOrthopedics. 615 24$aForensic Science. 615 24$aComputational Biology/Bioinformatics. 615 24$aHealth Informatics. 615 24$aRehabilitation. 676 $a502.85 676 $a570285 676 $a610.28 676 $a614.1 676 $a616.7 676 $a617.03 676 $a620 676 $a621.3848 700 $aMokhlesabadifarahani$b Bita$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721003 702 $aGunjan$b Vinit Kumar$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910299687003321 996 $aEMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction$92507763 997 $aUNINA