Vai al contenuto principale della pagina
| Autore: |
Awodey Steve
|
| Titolo: |
Cartesian Cubical Model Categories / / by Steve Awodey
|
| Pubblicazione: | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026 |
| Edizione: | 1st ed. 2026. |
| Descrizione fisica: | 1 online resource (220 pages) |
| Disciplina: | 514.2 |
| Soggetto topico: | Algebraic topology |
| Logic, Symbolic and mathematical | |
| Algebra, Homological | |
| Algebraic Topology | |
| Mathematical Logic and Foundations | |
| Category Theory, Homological Algebra | |
| Nota di contenuto: | Chapter 1. Introduction -- Chapter 2. Cartesian cubical sets -- Chapter 3. The cofibration weak factorization system -- Chapter 4. The fibration weak factorization system -- Chapter 5. The weak equivalences -- Chapter 6. The Frobenius condition -- Chapter 7. A universal fibration -- Chapter 8. The equivalence extension property -- Chapter 9. The fibration extension property. |
| Sommario/riassunto: | This book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory. |
| Titolo autorizzato: | Cartesian Cubical Model Categories ![]() |
| ISBN: | 3-032-08730-9 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996696982303316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |