1.

Record Nr.

UNISA996696982303316

Autore

Awodey Steve

Titolo

Cartesian Cubical Model Categories / / by Steve Awodey

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026

ISBN

3-032-08730-9

Edizione

[1st ed. 2026.]

Descrizione fisica

1 online resource (220 pages)

Collana

Lecture Notes in Mathematics, , 1617-9692 ; ; 2385

Disciplina

514.2

Soggetti

Algebraic topology

Logic, Symbolic and mathematical

Algebra, Homological

Algebraic Topology

Mathematical Logic and Foundations

Category Theory, Homological Algebra

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Chapter 1. Introduction -- Chapter 2. Cartesian cubical sets -- Chapter 3. The cofibration weak factorization system -- Chapter 4. The fibration weak factorization system -- Chapter 5. The weak equivalences -- Chapter 6. The Frobenius condition -- Chapter 7. A universal fibration -- Chapter 8. The equivalence extension property -- Chapter 9. The fibration extension property.

Sommario/riassunto

This book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory.