LEADER 02955nam 22005655 450 001 996696982303316 005 20260103120410.0 010 $a3-032-08730-9 024 7 $a10.1007/978-3-032-08730-0 035 $a(CKB)44773726000041 035 $a(MiAaPQ)EBC32471618 035 $a(Au-PeEL)EBL32471618 035 $a(DE-He213)978-3-032-08730-0 035 $a(EXLCZ)9944773726000041 100 $a20260103d2026 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCartesian Cubical Model Categories /$fby Steve Awodey 205 $a1st ed. 2026. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2026. 215 $a1 online resource (220 pages) 225 1 $aLecture Notes in Mathematics,$x1617-9692 ;$v2385 311 08$a3-032-08729-5 327 $aChapter 1. Introduction -- Chapter 2. Cartesian cubical sets -- Chapter 3. The cofibration weak factorization system -- Chapter 4. The fibration weak factorization system -- Chapter 5. The weak equivalences -- Chapter 6. The Frobenius condition -- Chapter 7. A universal fibration -- Chapter 8. The equivalence extension property -- Chapter 9. The fibration extension property. 330 $aThis book introduces the category of Cartesian cubical sets and endows it with a Quillen model structure using ideas coming from Homotopy type theory. In particular, recent constructions of cubical systems of univalent type theory are used to determine abstract homotopical semantics of type theory. The celebrated univalence axiom of Voevodsky plays a key role in establishing the basic laws of a model structure, showing that the homotopical interpretation of constructive type theory is not merely possible, but in a certain, precise sense also necessary for the validity of univalence. Fully rigorous proofs are given in diagrammatic style, using the language and methods of categorical logic and topos theory. The intended readers are researchers and graduate students in homotopy theory, type theory, and category theory. 410 0$aLecture Notes in Mathematics,$x1617-9692 ;$v2385 606 $aAlgebraic topology 606 $aLogic, Symbolic and mathematical 606 $aAlgebra, Homological 606 $aAlgebraic Topology 606 $aMathematical Logic and Foundations 606 $aCategory Theory, Homological Algebra 615 0$aAlgebraic topology. 615 0$aLogic, Symbolic and mathematical. 615 0$aAlgebra, Homological. 615 14$aAlgebraic Topology. 615 24$aMathematical Logic and Foundations. 615 24$aCategory Theory, Homological Algebra. 676 $a514.2 700 $aAwodey$b Steve$01276661 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996696982303316 996 $aCartesian Cubical Model Categories$94519851 997 $aUNISA