Vai al contenuto principale della pagina

Artificial Gauge Fields with Ultracold Atoms in Optical Lattices / / by Monika Aidelsburger



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Aidelsburger Monika Visualizza persona
Titolo: Artificial Gauge Fields with Ultracold Atoms in Optical Lattices / / by Monika Aidelsburger Visualizza cluster
Pubblicazione: Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
Edizione: 1st ed. 2016.
Descrizione fisica: 1 online resource (180 p.)
Disciplina: 599.0188
Soggetto topico: Phase transformations (Statistical physics)
Condensed materials
Low temperature physics
Low temperatures
Quantum computers
Spintronics
Quantum Gases and Condensates
Low Temperature Physics
Quantum Information Technology, Spintronics
Note generali: "Doctoral Thesis accepted by Ludwig-Maximilians-Universität München, Germany."
Nota di bibliografia: Includes bibliographical references at the end of each chapters.
Nota di contenuto: Introduction -- Square Lattice with Magnetic field -- Artificial Gauge Fields with Laser-Assisted Tunneling -- Overview of the Experimental Setup and Measurement Techniques -- Staggered Magnetic Flux -- Harper-Hofstadter Model and Spin Hall Effect -- All-Optical Setup for Flux Rectification -- Chern-Number Measurement of Hofstadter Bands -- Conclusions and Outlook.
Sommario/riassunto: This work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system. It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents. The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms.
Titolo autorizzato: Artificial Gauge Fields with Ultracold Atoms in Optical Lattices  Visualizza cluster
ISBN: 3-319-25829-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910254611903321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: Springer Theses, Recognizing Outstanding Ph.D. Research, . 2190-5053