LEADER 04259nam 22007335 450 001 9910254611903321 005 20200630130911.0 010 $a3-319-25829-X 024 7 $a10.1007/978-3-319-25829-4 035 $a(CKB)3710000000539297 035 $a(EBL)4199822 035 $a(SSID)ssj0001597166 035 $a(PQKBManifestationID)16296532 035 $a(PQKBTitleCode)TC0001597166 035 $a(PQKBWorkID)14886717 035 $a(PQKB)11329907 035 $a(DE-He213)978-3-319-25829-4 035 $a(MiAaPQ)EBC4199822 035 $a(PPN)190886730 035 $a(EXLCZ)993710000000539297 100 $a20151214d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aArtificial Gauge Fields with Ultracold Atoms in Optical Lattices$b[electronic resource] /$fby Monika Aidelsburger 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (180 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $a"Doctoral Thesis accepted by Ludwig-Maximilians-Universita?t Mu?nchen, Germany." 311 $a3-319-25827-3 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Square Lattice with Magnetic field -- Artificial Gauge Fields with Laser-Assisted Tunneling -- Overview of the Experimental Setup and Measurement Techniques -- Staggered Magnetic Flux -- Harper-Hofstadter Model and Spin Hall Effect -- All-Optical Setup for Flux Rectification -- Chern-Number Measurement of Hofstadter Bands -- Conclusions and Outlook. 330 $aThis work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system. It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents. The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aPhase transformations (Statistical physics) 606 $aCondensed materials 606 $aLow temperature physics 606 $aLow temperatures 606 $aQuantum computers 606 $aSpintronics 606 $aQuantum Gases and Condensates$3https://scigraph.springernature.com/ontologies/product-market-codes/P24033 606 $aLow Temperature Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25130 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 615 0$aPhase transformations (Statistical physics). 615 0$aCondensed materials. 615 0$aLow temperature physics. 615 0$aLow temperatures. 615 0$aQuantum computers. 615 0$aSpintronics. 615 14$aQuantum Gases and Condensates. 615 24$aLow Temperature Physics. 615 24$aQuantum Information Technology, Spintronics. 676 $a599.0188 700 $aAidelsburger$b Monika$4aut$4http://id.loc.gov/vocabulary/relators/aut$0799827 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254611903321 996 $aArtificial Gauge Fields with Ultracold Atoms in Optical Lattices$91800585 997 $aUNINA