

1. Record Nr.	UNINA9910254611903321
Autore	Aidelsburger Monika
Titolo	Artificial Gauge Fields with Ultracold Atoms in Optical Lattices / / by Monika Aidelsburger
Pubbl/distr/stampa	Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016
ISBN	3-319-25829-X
Edizione	[1st ed. 2016.]
Descrizione fisica	1 online resource (180 p.)
Collana	Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5053
Disciplina	599.0188
Soggetti	Phase transformations (Statistical physics) Condensed matter Low temperatures Quantum computers Spintronics Quantum Gases and Condensates Low Temperature Physics Quantum Information Technology, Spintronics
Lingua di pubblicazione	Inglese
Formato	Materiale a stampa
Livello bibliografico	Monografia
Note generali	"Doctoral Thesis accepted by Ludwig-Maximilians-Universitat Munchen, Germany."
Nota di bibliografia	Includes bibliographical references at the end of each chapters.
Nota di contenuto	Introduction -- Square Lattice with Magnetic field -- Artificial Gauge Fields with Laser-Assisted Tunneling -- Overview of the Experimental Setup and Measurement Techniques -- Staggered Magnetic Flux -- Harper-Hofstadter Model and Spin Hall Effect -- All-Optical Setup for Flux Rectification -- Chern-Number Measurement of Hofstadter Bands -- Conclusions and Outlook.
Sommario/riassunto	This work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system. It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property

that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents. The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms.
