Vai al contenuto principale della pagina

Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Wetzel Johannes Visualizza persona
Titolo: Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images Visualizza cluster
Pubblicazione: Karlsruhe, : KIT Scientific Publishing, 2022
Descrizione fisica: 1 online resource (204 p.)
Soggetto topico: Electrical engineering
Soggetto non controllato: depth sensor indoor surveillance
inverses Problem
joint multi-view person detection
mean-field variational inference
Netzwerk von 3D-Sensoren
probabilistische Personendetektion
Tiefenbilder
vertical top-view indoor pedestrian detection
Sommario/riassunto: In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast the problem of multi-view people detection in overlapping depth images as an inverse problem and present a generative probabilistic framework to jointly exploit the temporal multi-view image evidence.
Titolo autorizzato: Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images  Visualizza cluster
ISBN: 1000144094
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910584592103321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui