LEADER 02016nam 2200433z- 450 001 9910584592103321 005 20220719 010 $a1000144094 035 $a(CKB)5580000000346213 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/90072 035 $a(oapen)doab90072 035 $a(EXLCZ)995580000000346213 100 $a20202207d2022 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aProbabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images 210 $aKarlsruhe$cKIT Scientific Publishing$d2022 215 $a1 online resource (204 p.) 225 1 $aForschungsberichte aus der Industriellen Informationstechnik 311 08$a3-7315-1177-0 330 $aIn this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast the problem of multi-view people detection in overlapping depth images as an inverse problem and present a generative probabilistic framework to jointly exploit the temporal multi-view image evidence. 606 $aElectrical engineering$2bicssc 610 $adepth sensor indoor surveillance 610 $ainverses Problem 610 $ajoint multi-view person detection 610 $amean-field variational inference 610 $aNetzwerk von 3D-Sensoren 610 $aprobabilistische Personendetektion 610 $aTiefenbilder 610 $avertical top-view indoor pedestrian detection 615 7$aElectrical engineering 700 $aWetzel$b Johannes$4auth$01306799 906 $aBOOK 912 $a9910584592103321 996 $aProbabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images$93028589 997 $aUNINA