| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910584592103321 |
|
|
Autore |
Wetzel Johannes |
|
|
Titolo |
Probabilistic Models and Inference for Multi-View People Detection in Overlapping Depth Images |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Karlsruhe, : KIT Scientific Publishing, 2022 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (204 p.) |
|
|
|
|
|
|
Collana |
|
Forschungsberichte aus der Industriellen Informationstechnik |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
In this work, the task of wide-area indoor people detection in a network of depth sensors is examined. In particular, we investigate how the redundant and complementary multi-view information, including the temporal context, can be jointly leveraged to improve the detection performance. We recast the problem of multi-view people detection in overlapping depth images as an inverse problem and present a generative probabilistic framework to jointly exploit the temporal multi-view image evidence. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9911019247603321 |
|
|
Autore |
Ujihara Kikuo |
|
|
Titolo |
Output coupling in optical cavities and lasers : a quantum theoretical approach / / Kikuo Ujihara |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
ISBN |
|
9786612550348 |
9781282550346 |
1282550349 |
9783527630493 |
352763049X |
9783527630509 |
3527630503 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (410 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Lasers |
Optical communications |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Output Coupling in Optical Cavities and Lasers; Contents; Preface; Acknowledgments; 1 A One-Dimensional Optical Cavity with Output Coupling: Classical Analysis; 1.1 Boundary Conditions at Perfect Conductor and Dielectric Surfaces; 1.2 Classical Cavity Analysis; 1.2.1 One-Sided Cavity; 1.2.2 Symmetric Two-Sided Cavity; 1.3 Normal Mode Analysis: Orthogonal Modes; 1.3.1 One-Sided Cavity; 1.3.2 Symmetric Two-Sided Cavity; 1.4 Discrete versus Continuous Mode Distribution; 1.5 Expansions of the Normalization Factor; 1.6 Completeness of the Modes of the ''Universe'' |
2 A One-Dimensional Optical Cavity with Output Coupling: Quantum Analysis2.1 Quantization; 2.2 Energy Eigenstates; 2.3 Field Commutation Relation; 2.4 Thermal Radiation and the Fluctuation-Dissipation Theorem; 2.4.1 The Density Operator of the Thermal Radiation Field; 2.4.2 The Correlation Function and the Power Spectrum; 2.4.3 The Response Function and the Fluctuation- |
|
|
|
|
|
|
|
|
|
|
|
Dissipation Theorem; 2.4.4 Derivation of the Langevin Noise for a Single Cavity Resonant Mode; 2.4.5 Excitation of the Cavity Resonant Mode by a Current Impulse; 2.5 Extension to an Arbitrarily Stratified Cavity |
2.5.1 Description of the Cavity Structure2.5.2 The Modes of the ''Universe''; 3 A One-Dimensional Quasimode Laser: General Formulation; 3.1 Cavity Resonant Modes; 3.2 The Atoms; 3.3 The Atom-Field Interaction; 3.4 Equations Governing the Atom-Field Interaction; 3.5 Laser Equation of Motion: Introducing the Langevin Forces; 3.5.1 The Field Decay; 3.5.2 Relaxation in Atomic Dipole and Atomic Inversion; 4 A One-Dimensional Quasimode Laser: Semiclassical and Quantum Analysis; 4.1 Semiclassical Linear Gain Analysis; 4.2 Semiclassical Nonlinear Gain Analysis; 4.3 Quantum Linear Gain Analysis |
4.4 Quantum Nonlinear Gain Analysis5 A One-Dimensional Laser with Output Coupling: Derivation of the Laser Equation of Motion; 5.1 The Field; 5.2 The Atoms; 5.3 The Atom-Field Interaction; 5.4 Langevin Forces for the Atoms; 5.5 Laser Equation of Motion for a Laser with Output Coupling; 6 A One-Dimensional Laser with Output Coupling: Contour Integral Method; 6.1 Contour Integral Method: Semiclassical Linear Gain Analysis; 6.2 Contour Integral Method: Semiclassical Nonlinear Gain Analysis; 6.3 Contour Integral Method: Quantum Linear Gain Analysis |
6.4 Contour Integral Method: Quantum Nonlinear Gain Analysis7 A One-Dimensional Laser with Output Coupling: Semiclassical Linear Gain Analysis; 7.1 The Field Equation Inside the Cavity; 7.2 Homogeneously Broadened Atoms and Uniform Atomic Inversion; 7.3 Solution of the Laser Equation of Motion; 7.3.1 The Field Equation for Inside the Cavity; 7.3.2 Laplace-Transformed Equations; 7.3.3 The Field Inside the Cavity; 7.3.4 The Field Outside the Cavity; 8 A One-Dimensional Laser with Output Coupling: Semiclassical Nonlinear Gain Analysis; 8.1 The Field Equation Inside the Cavity |
8.2 Homogeneously Broadened Atoms and Uniform Pumping |
|
|
|
|
|
|
Sommario/riassunto |
|
Authored by one of the founders and major players in this field of research, this is a thorough and comprehensive approach to the quantum mechanical output coupling theory of lasers -- an important area of optical physics that has so far been neglected in the scientific literature. Clearly structured, the various sections cover one-dimensional optical cavity, laser, and microcavity laser with output coupling, atom-field interaction in a free-dimensional space, 3D analysis of spontaneous emission in a planar microcavity with output coupling, plus two-atom spontaneous emission.With numer |
|
|
|
|
|
|
|
| |