Vai al contenuto principale della pagina
Autore: | Hu Qinglei |
Titolo: | Control allocation for spacecraft under actuator faults / / Qinglei Hu [et al.] |
Pubblicazione: | Singapore : , : Springer, , [2021] |
©2021 | |
Descrizione fisica: | 1 online resource (xviii, 221 pages) |
Disciplina: | 629.4742 |
Soggetto topico: | Space vehicles - Attitude control systems |
Actuators | |
Vehicles espacials | |
Actuadors | |
Sistemes adaptatius | |
Soggetto genere / forma: | Llibres electrònics |
Nota di contenuto: | Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction -- 1.1 Background and Motivations -- 1.2 Introduction to Control Allocation -- 1.2.1 Control Allocation Methods -- 1.2.2 Applications of Control Allocation in Aeronautics and Astronautics -- 1.3 Introduction to Fault-Tolerant Control -- 1.3.1 Fault-Tolerant Control Methods -- 1.3.2 Applications of Fault-Tolerant Control in Aeronautics and Astronautics -- 1.4 Organization of the Book -- References -- 2 Mathematical Model of the Attitude Control System -- 2.1 Spacecraft Attitude Kinematics -- 2.1.1 Euler Angles Based Model -- 2.1.2 Quaternion Based Model -- 2.1.3 Modified Rodrigues Parameters Based Model -- 2.2 Spacecraft Attitude Dynamics Model -- References -- 3 Null-Space Based Optimal Control Allocation for Spacecraft Attitude Stabilization -- 3.1 Introduction -- 3.2 Problem Formulation -- 3.2.1 Spacecraft Attitude Dynamics -- 3.2.2 Control Objective -- 3.3 Attitude Control Law Design -- 3.3.1 SPD-Based Virtual/Baseline Control Law Design -- 3.3.2 Null-Space-Based Optimal Control Reallocation Scheme -- 3.4 Simulation Results -- 3.4.1 Time Response Results Under the Proposed Control Law -- 3.4.2 Energy Consumption Analysis -- 3.5 Conclusions -- References -- 4 Robust Finite-Time Control Allocation for Attitude Stabilization Under Actuator Misalignment -- 4.1 Introduction -- 4.2 Problem Formulation -- 4.2.1 Actuator Configuration with Misalignment -- 4.2.2 Control Objective -- 4.3 Control Law Design -- 4.3.1 Nonsingular Terminal Sliding Mode Based Virtual Finite Time Feedback Controller Design -- 4.3.2 Robust Least Squares-Based Control Allocator Design Under Actuator Misalignment -- 4.4 Simulation Results -- 4.4.1 Simulation Results with Misalignment -- 4.4.2 Energy Consumption Analysis -- 4.5 Conclusions -- References. |
5 Finite-Time Fault-Tolerant Spacecraft Attitude Control with Torque Saturation -- 5.1 Introduction -- 5.2 Problem Formulation -- 5.2.1 Definitions and Lemmas -- 5.3 Saturated Finite-Time Fault-Tolerant Control Law Design -- 5.3.1 Novel Time-Varying Terminal Sliding Mode Design -- 5.3.2 Basic Saturated Finite-Time Controller Design -- 5.3.3 Saturated Fault-Tolerant Finite-Time Controller Design -- 5.3.4 The Advantage of Modification Matrix A -- 5.4 Simulation Results -- 5.5 Conclusions -- References -- 6 Extended State Observer Based Optimal Attitude Robust Control of Spacecraft -- 6.1 Introduction -- 6.2 Problem Formulation -- 6.3 Robust Optimal Attitude Controller Design -- 6.3.1 Extended State Observer Design -- 6.3.2 Inverse Optimal Controller Design with Uncertainties -- 6.3.3 CLF and Zero Dynamics Based Optimal Controller Design -- 6.4 Simulation Results -- 6.4.1 Comparison and Analysis Under Different Controllers -- 6.4.2 Comparisons and Analyses of Energy Consumptions Under Different Controllers -- 6.5 Conclusions -- References -- 7 Spacecraft Attitude Fault-Tolerant Control Based on Iterative Learning Observer and Control Allocation -- 7.1 Introduction -- 7.2 Problem Formulation -- 7.3 Iterative Learning Observer Design -- 7.4 Control Strategy Design -- 7.4.1 Virtual Feedback Controller Design -- 7.4.2 Robust Control Allocation Design -- 7.5 Simulation Results -- 7.5.1 Case 1 -- 7.5.2 Case 2 -- 7.6 Conclusions -- References -- 8 Nonlinear Proportional-Derivative Control Incorporating Closed-Loop Control Allocation for Spacecraft -- 8.1 Introduction -- 8.2 Problem Formulation -- 8.3 Attitude Control Law Design -- 8.3.1 SPD-based Virtual/Baseline Control Law Design -- 8.3.2 A Closed-Loop Control Allocation Design with Optimization Method -- 8.4 Simulation Results -- 8.4.1 Attitude Control without Actuator Uncertainties and Disturbances. | |
8.4.2 Attitude Control with Actuator Uncertainties and Disturbances -- 8.5 Conclusions -- References -- 9 Closed-Loop Based Control Allocation for Spacecraft Attitude Stabilization with Actuator Faults -- 9.1 Introduction -- 9.2 Problem Formulation -- 9.2.1 System Schematic Diagram -- 9.2.2 Problem Formulation -- 9.3 Control Scheme Design and Stability Analysis -- 9.3.1 Baseline Control Law Design -- 9.3.2 Online Robust Control Allocation Design -- 9.3.3 Online Pseudo-Inverse Control Allocation -- 9.3.4 Closed-Loop Stability with Online Control Allocation Analysis -- 9.4 Simulation Results -- 9.4.1 Performance with FDD Estimation Uncertainty Bound η= 5% -- 9.4.2 Performance with FDD Estimation Uncertainty Bound η=33% -- 9.5 Conclusions -- References -- 10 Conclusions -- 10.1 Conclusions -- 10.2 Open Problems and Challenges. | |
Titolo autorizzato: | Control allocation for spacecraft under actuator faults |
ISBN: | 981-16-0439-8 |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910739412403321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |