Vai al contenuto principale della pagina
Autore: | Blaom Anthony D. <1968-> |
Titolo: | A geometric setting for Hamiltonian perturbation theory / / Anthony D. Blaom |
Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , [2001] |
©2001 | |
Descrizione fisica: | 1 online resource (137 p.) |
Disciplina: | 510 s |
515/.35 | |
Soggetto topico: | Perturbation (Mathematics) |
Hamiltonian systems | |
Soggetto genere / forma: | Electronic books. |
Note generali: | "September 2001, volume 153, number 727 (third of 5 numbers)." |
Nota di bibliografia: | Includes bibliographical references. |
Nota di contenuto: | ""Contents""; ""Abstract""; ""Notation""; ""Overture""; ""Introduction""; ""Part 1. Dynamics""; ""Chapter 1. Lie-Theoretic Preliminaries""; ""Chapter 2. Action-Group Coordinates""; ""Chapter 3. On the Existence of Action-Group Coordinates""; ""Chapter 4. Naive Averaging""; ""Chapter 5. An Abstract Formulation of Nekhoroshev's Theorem""; ""Chapter 6. Applying the Abstract Nekhoroshev Theorem to Action-Group Coordinates""; ""Chapter 7. Nekhoroshev-Type Estimates for Momentum Maps""; ""Part 2. Geometry""; ""Chapter 8. On Hamiltonian G-Spaces with Regular Momenta"" |
""Chapter 9. Action-Group Coordinates as a Symplectic Cross-Section""""Chapter 10. Constructing Action-Group Coordinates""; ""Chapter 11. The Axisymmetric Euler-Poinsot Rigid Body""; ""Chapter 12. Passing from Dynamic Integrability to Geometric Integrability""; ""Chapter 13. Concluding Remarks""; ""Appendix A. Proof of the Nekhoroshev-Lochak Theorem""; ""Appendix B. Proof that W is a Slice""; ""Appendix C. Proof of the Extension Lemma""; ""Appendix D. An Application of Converting Dynamic Integrabilityinto Geometric Integrability: The Euler-Poinsot Rigid Body Revisited"" | |
""Appendix E. Dual Pairs, Leaf Correspondence, and Symplectic Reduction""""Bibliography"" | |
Titolo autorizzato: | Geometric setting for Hamiltonian perturbation theory |
ISBN: | 1-4704-0320-X |
Formato: | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione: | Inglese |
Record Nr.: | 9910480521303321 |
Lo trovi qui: | Univ. Federico II |
Opac: | Controlla la disponibilità qui |