03000nam 2200577 450 991048052130332120170822144517.01-4704-0320-X(CKB)3360000000464911(EBL)3114437(SSID)ssj0000973591(PQKBManifestationID)11555963(PQKBTitleCode)TC0000973591(PQKBWorkID)10984301(PQKB)10203866(MiAaPQ)EBC3114437(PPN)195416139(EXLCZ)99336000000046491120010427h20012001 uy| 0engur|n|---|||||txtccrA geometric setting for Hamiltonian perturbation theory /Anthony D. BlaomProvidence, Rhode Island :American Mathematical Society,[2001]©20011 online resource (137 p.)Memoirs of the American Mathematical Society,0065-9266 ;number 727"September 2001, volume 153, number 727 (third of 5 numbers)."0-8218-2720-0 Includes bibliographical references.""Contents""; ""Abstract""; ""Notation""; ""Overture""; ""Introduction""; ""Part 1. Dynamics""; ""Chapter 1. Lie-Theoretic Preliminaries""; ""Chapter 2. Action-Group Coordinates""; ""Chapter 3. On the Existence of Action-Group Coordinates""; ""Chapter 4. Naive Averaging""; ""Chapter 5. An Abstract Formulation of Nekhoroshev's Theorem""; ""Chapter 6. Applying the Abstract Nekhoroshev Theorem to Action-Group Coordinates""; ""Chapter 7. Nekhoroshev-Type Estimates for Momentum Maps""; ""Part 2. Geometry""; ""Chapter 8. On Hamiltonian G-Spaces with Regular Momenta""""Chapter 9. Action-Group Coordinates as a Symplectic Cross-Section""""Chapter 10. Constructing Action-Group Coordinates""; ""Chapter 11. The Axisymmetric Euler-Poinsot Rigid Body""; ""Chapter 12. Passing from Dynamic Integrability to Geometric Integrability""; ""Chapter 13. Concluding Remarks""; ""Appendix A. Proof of the Nekhoroshev-Lochak Theorem""; ""Appendix B. Proof that W is a Slice""; ""Appendix C. Proof of the Extension Lemma""; ""Appendix D. An Application of Converting Dynamic Integrabilityinto Geometric Integrability: The Euler-Poinsot Rigid Body Revisited""""Appendix E. Dual Pairs, Leaf Correspondence, and Symplectic Reduction""""Bibliography""Memoirs of the American Mathematical Society ;no. 727.Perturbation (Mathematics)Hamiltonian systemsElectronic books.Perturbation (Mathematics)Hamiltonian systems.510 s515/.35Blaom Anthony D.1968-66143MiAaPQMiAaPQMiAaPQBOOK9910480521303321Geometric setting for Hamiltonian perturbation theory377886UNINA