1.

Record Nr.

UNINA9910480521303321

Autore

Blaom Anthony D. <1968->

Titolo

A geometric setting for Hamiltonian perturbation theory / / Anthony D. Blaom

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , [2001]

©2001

ISBN

1-4704-0320-X

Descrizione fisica

1 online resource (137 p.)

Collana

Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 727

Disciplina

510 s

515/.35

Soggetti

Perturbation (Mathematics)

Hamiltonian systems

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"September 2001, volume 153, number 727 (third of 5 numbers)."

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

""Contents""; ""Abstract""; ""Notation""; ""Overture""; ""Introduction""; ""Part 1. Dynamics""; ""Chapter 1. Lie-Theoretic Preliminaries""; ""Chapter 2. Action-Group Coordinates""; ""Chapter 3. On the Existence of Action-Group Coordinates""; ""Chapter 4. Naive Averaging""; ""Chapter 5. An Abstract Formulation of Nekhoroshev's Theorem""; ""Chapter 6. Applying the Abstract Nekhoroshev Theorem to Action-Group Coordinates""; ""Chapter 7. Nekhoroshev-Type Estimates for Momentum Maps""; ""Part 2. Geometry""; ""Chapter 8. On Hamiltonian G-Spaces with Regular Momenta""

""Chapter 9. Action-Group Coordinates as a Symplectic Cross-Section""""Chapter 10. Constructing Action-Group Coordinates""; ""Chapter 11. The Axisymmetric Euler-Poinsot Rigid Body""; ""Chapter 12. Passing from Dynamic Integrability to Geometric Integrability""; ""Chapter 13. Concluding Remarks""; ""Appendix A. Proof of the Nekhoroshev-Lochak Theorem""; ""Appendix B. Proof that W is a Slice""; ""Appendix C. Proof of the Extension Lemma""; ""Appendix D. An Application of Converting Dynamic Integrabilityinto Geometric Integrability: The Euler-Poinsot Rigid Body Revisited""



""Appendix E. Dual Pairs, Leaf Correspondence, and Symplectic Reduction""""Bibliography""