|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910480521303321 |
|
|
Autore |
Blaom Anthony D. <1968-> |
|
|
Titolo |
A geometric setting for Hamiltonian perturbation theory / / Anthony D. Blaom |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2001] |
|
©2001 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (137 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; number 727 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Perturbation (Mathematics) |
Hamiltonian systems |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"September 2001, volume 153, number 727 (third of 5 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Abstract""; ""Notation""; ""Overture""; ""Introduction""; ""Part 1. Dynamics""; ""Chapter 1. Lie-Theoretic Preliminaries""; ""Chapter 2. Action-Group Coordinates""; ""Chapter 3. On the Existence of Action-Group Coordinates""; ""Chapter 4. Naive Averaging""; ""Chapter 5. An Abstract Formulation of Nekhoroshev's Theorem""; ""Chapter 6. Applying the Abstract Nekhoroshev Theorem to Action-Group Coordinates""; ""Chapter 7. Nekhoroshev-Type Estimates for Momentum Maps""; ""Part 2. Geometry""; ""Chapter 8. On Hamiltonian G-Spaces with Regular Momenta"" |
""Chapter 9. Action-Group Coordinates as a Symplectic Cross-Section""""Chapter 10. Constructing Action-Group Coordinates""; ""Chapter 11. The Axisymmetric Euler-Poinsot Rigid Body""; ""Chapter 12. Passing from Dynamic Integrability to Geometric Integrability""; ""Chapter 13. Concluding Remarks""; ""Appendix A. Proof of the Nekhoroshev-Lochak Theorem""; ""Appendix B. Proof that W is a Slice""; ""Appendix C. Proof of the Extension Lemma""; ""Appendix D. An Application of Converting Dynamic Integrabilityinto Geometric Integrability: The Euler-Poinsot Rigid Body Revisited"" |
|
|
|
|