Vai al contenuto principale della pagina

Fundamentals of strength : principles, experiments, and applications of an internal state variable constitutive formulation / / Paul Follansbee



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Follansbee Paul Visualizza persona
Titolo: Fundamentals of strength : principles, experiments, and applications of an internal state variable constitutive formulation / / Paul Follansbee Visualizza cluster
Pubblicazione: Cham, Switzerland : , : Springer International Publishing, , [2022]
©2022
Edizione: 2nd edition.
Descrizione fisica: 1 online resource (546 pages)
Disciplina: 620.112
Soggetto topico: Strength of materials - Mathematical models
Strains and stresses
Nota di contenuto: Intro -- Foreword to the Second Edition -- Preface to the First Edition -- Preface to the Second Edition -- Acknowledgment -- How to Use This Textbook -- Contents -- About the Author -- Symbols -- Chapter 1: Measuring the Strength of Metals -- 1.1 How Is Strength Measured? -- 1.2 The Tensile Test -- 1.3 Stress in a Test Specimen -- 1.4 Strain in a Test Specimen -- 1.5 The Elastic Stress Versus Strain Curve -- 1.6 The Elastic Modulus -- 1.7 Lateral Strains and Poisson´s Ratio -- 1.8 Defining Strength -- 1.9 Stress-Strain Curve -- 1.10 The True Stress-True Strain Conversion -- 1.11 Example Tension Tests -- 1.12 Accounting for Strain Measurement Errors -- 1.13 Formation of a Neck in a Tensile Specimen -- 1.14 Strain Rate -- 1.15 Summary -- Exercises -- References -- Chapter 2: Structure and Bonding -- 2.1 Forces and Resultant Energies Associated with an Ionic Bond -- 2.2 Elastic Straining and the Force Versus Separation Diagram -- 2.3 Crystal Structure -- 2.4 Plastic Deformation -- 2.5 Dislocations -- 2.6 Summary -- Exercises -- References -- Chapter 3: Contributions to Strength -- 3.1 Strength of a Single Crystal -- 3.2 The Peierls Stress -- 3.3 The Importance of Available Slip Systems and Geometry of HCP Metals -- 3.4 Contributions from Grain Boundaries -- 3.5 Contributions from Impurity Atoms -- 3.6 Contributions from Stored Dislocations -- 3.7 Contributions from Precipitates -- 3.8 Summary -- Exercises -- References -- Chapter 4: Dislocation-Obstacle Interactions -- 4.1 A Simple Dislocation/Obstacle Profile -- 4.2 Thermal Energy-Boltzmann´s Equation -- 4.3 The Implication of 0 K -- 4.4 Addition of a Second Obstacle to a Slip Plane -- 4.5 Kinetics -- 4.6 Analysis of Experimental Data -- 4.7 Multiple Obstacles -- 4.8 Kinetics of Hardening -- 4.9 Summary -- Exercises -- References -- Chapter 5: A Constitutive Law for Metal Deformation.
5.1 Constitutive Laws in Engineering Design and Materials Processing -- 5.2 Simple Hardening Models -- 5.3 State Variables -- 5.4 Defining a State Variable in Metal Deformation -- 5.5 The Mechanical Threshold Stress Model -- 5.5.1 Example Material and Constitutive Law -- 5.6 Common Deviations from Model Behavior -- 5.7 Summary -- Exercises -- References -- Chapter 6: Further MTS Model Developments -- 6.1 Removing the Temperature Dependence of the Shear Modulus -- 6.2 Introducing a More Descriptive Obstacle Profile -- 6.3 Dealing with Multiple Obstacles -- 6.4 Defining the Activation Volume in the Presence of Multiple Obstacles Populations -- 6.5 The Evolution Equation -- 6.6 Adiabatic Deformation -- 6.7 Summary -- Exercises -- References -- Chapter 7: Data Analysis: Deriving MTS Model Parameters -- 7.1 A Hypothetical Alloy -- 7.2 Pure Fosium -- 7.3 Hardening in Pure Fosium -- 7.4 Yield Stress Kinetics in Unstrained FoLLyalloy -- 7.5 Hardening in FoLLyalloy -- 7.6 Evaluating the Stored Dislocation Obstacle Population -- 7.7 Deriving the Evolution Equation -- 7.8 The Constitutive Law for FoLLyalloy -- 7.9 Summary -- Exercises -- Chapter 8: Application of MTS Model to Copper and Nickel -- 8.1 Pure Copper -- 8.2 Follansbee and Kocks Experiments -- 8.3 Temperature-Dependent Stress-Strain Curves -- 8.4 Eleiche and Campbell Measurements in Torsion -- 8.5 Analysis of Deformation in Nickel -- 8.6 Predicted Stress-Strain Curves in Nickel and Comparison with Experiment -- 8.7 Application to Shock Deformed Nickel -- 8.8 Deformation in Nickel Plus Carbon Alloys -- 8.9 Monel 400-Analysis of Grain-Size Dependence -- 8.10 Copper-Aluminum Alloys -- 8.11 Summary -- Exercises -- References -- Chapter 9: Application of MTS Model to BCC Metals and Alloys -- 9.1 Pure BCC Metals -- 9.2 Comparison with Campbell and Ferguson Measurements.
9.3 Trends in the Activation Volume for Pure BCC Metals -- 9.4 Structure Evolution in BCC Pure Metals and Alloys -- 9.5 Analysis of the Constitutive Behavior of a Fictitious BCC Alloy-UfKonel -- 9.6 Analysis of the Constitutive Behavior of AISI 1018 Steel -- 9.7 Analysis of the Constitutive Behavior of Polycrystalline Vanadium -- 9.8 Deformation Twinning in Vanadium -- 9.9 Signature of Dynamic Strain Aging in Vanadium -- 9.10 Analysis of Deformation Behavior of Polycrystalline Niobium -- 9.11 Summary -- Exercises -- References -- Chapter 10: Application of MTS Model to HCP Metals and Alloys -- 10.1 Pure Zinc -- 10.2 Kinetics of Yield in Pure Cadmium -- 10.3 Structure Evolution in Pure Cadmium -- 10.4 Pure Magnesium -- 10.5 Magnesium Alloy AZ31 -- 10.6 Pure Zirconium -- 10.7 Structure Evolution in Zirconium -- 10.7.1 The Influence of Deformation Twinning on Hardening -- 10.8 Analysis of Deformation in Irradiated Zircaloy-2 -- 10.9 Analysis of Deformation Behavior of Polycrystalline Titanium -- 10.9.1 Dynamic Strain Aging in Polycrystalline Titanium -- 10.10 Analysis of Deformation Behavior of Titanium Alloy Ti6Al-4V -- 10.11 Summary -- Exercises -- References -- Chapter 11: Application of MTS Model to Austenitic Stainless Steels -- 11.1 Variation of Yield Stress with Temperature and Strain Rate in Annealed Materials -- 11.2 Nitrogen in Austenitic Stainless Steels -- 11.3 The Hammond and Sikka Study in 316 -- 11.4 Modeling the Stress-Strain Curve -- 11.5 Dynamic Strain Aging in Austenitic Stainless Steels -- 11.6 Application of the Model to Irradiation-Damaged Material -- 11.7 Summary -- Exercises -- References -- Chapter 12: Application of MTS Model to Nickel-Base Superalloys -- 12.1 Deformation in Nickel-Based Superalloys -- 12.2 Yield Stress Kinetics -- 12.3 Strain Hardening in Several Nickel-Base Superalloys.
12.3.1 Strain Hardening in Inconel 600 -- 12.3.2 Strain Hardening in Inconel 718 -- 12.3.3 Yield Stress Kinetics and Strain Hardening in C-276 -- 12.3.4 Yield Stress Kinetics and Strain Hardening in C-22 -- 12.3.5 Potential Origins of High Hardening Rates -- 12.4 Signatures of Dynamic Strain Aging -- 12.5 Summary -- Exercises -- References -- Chapter 13: A Model for Dynamic Strain Aging -- 13.1 Review of Signatures of DSA -- 13.2 Focusing on the Increased Stress Levels Accompanying DSA -- 13.3 Toward a Mechanistic Understanding -- 13.4 Model Predictions -- 13.5 Predicting the Stresses When DSA is Active -- 13.6 Summary -- Appendix 13.A1 The Effect of an Incorrect Assumption on the Analysis Using Eq. 13.15 -- Appendix 13.A2 The Effect of DSA on the Stage II Hardening Rate -- Exercises -- References -- Chapter 14: Application of MTS Model to the Strength of Heavily Deformed Metals -- 14.1 Complications Introduced at Large Deformations -- 14.2 Stress Dependence of the Normalized Activation Energy goε -- 14.3 Addition of Stage IV Hardening to the Evolution Law -- 14.4 Grain Refinement -- 14.5 Application to Large-Strain ECAP Processing of Copper -- 14.5.1 Using the Torsion Curve Rather Than the Compression Curve -- 14.6 Further Insight into the Strain Hardening at High Strains -- 14.7 A Large-Strain Constitutive Description of Nickel -- 14.8 Application to Large-Strain ECAP Processing of Nickel -- 14.9 Application to Large-Strain ECAP Processing of Austenitic Stainless Steel -- 14.10 Analysis of Fine-Grained Processed Tungsten -- 14.11 Summary -- Exercises -- References -- Chapter 15: Summary and Status of Model Development -- 15.1 Analyzing the Temperature-Dependent Yield Stress -- 15.2 Stress Dependence of the Normalized Activation Energy goε -- 15.3 Evolution -- 15.4 Temperature and Strain-Rate Dependence of Evolution (Strain Hardening).
15.5 The Effects of Deformation Twinning -- 15.6 The Signature of Dynamic Strain Aging -- 15.7 Adding Insight to Deformation in Nickel-Base Superalloys -- 15.8 Adding Insight to Complex Processing Routes -- 15.9 Temperature Limits -- 15.10 Summary -- References -- Index.
Sommario/riassunto: This second edition updates and expands on the class-tested first edition text, augmenting discussion of dynamic strain aging and austenitic stainless steels and adding a section on analysis of nickel-base superalloys that shows how the mechanical threshold stress (MTS) model, an internal state variable constitutive formulation, can be used to de-convolute synergistic effects. The new edition retains a clear and rigorous presentation of the theory, mechanistic basis, and application of the MTS model.
Titolo autorizzato: Fundamentals of Strength  Visualizza cluster
ISBN: 9783031045561
9783031045554
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910734865003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Serie: The Minerals, Metals and Materials Series.