01108nam--2200361---450-99000187592020331620050624103106.0000187592USA01000187592(ALEPH)000187592USA0100018759220040726d1971----km-y0itay0103----bafreFR||||||||001yy<<Les>> sciences de la vie dans la pensée française du 18. sièclela génération des animaux de Descartes a l'EncyclopédieJacques Roger2. éd. complétéeParisColin1971848 p.24 cm20012001001-------2001BiologiaStoriaROGER,Jacques385389ITsalbcISBD990001875920203316II.1.C. 1012(IV C 1967)64235 L.M.IV CBKUMASIAV41020040726USA011413COPAT39020050624USA011031Sciences de la vie dans la pensée française du 18. siècle824185UNISA09863nam 2200517 450 991073486500332120230107102313.09783031045561(electronic bk.)9783031045554(MiAaPQ)EBC7054541(Au-PeEL)EBL7054541(CKB)24286845500041(PPN)263900223(EXLCZ)992428684550004120230107d2022 uy 0engurcnu||||||||txtrdacontentcrdamediacrrdacarrierFundamentals of strength principles, experiments, and applications of an internal state variable constitutive formulation /Paul Follansbee2nd edition.Cham, Switzerland :Springer International Publishing,[2022]©20221 online resource (546 pages)The Minerals, Metals and Materials Series.Print version: Follansbee, Paul Fundamentals of Strength Cham : Springer International Publishing AG,c2022 9783031045554 Intro -- Foreword to the Second Edition -- Preface to the First Edition -- Preface to the Second Edition -- Acknowledgment -- How to Use This Textbook -- Contents -- About the Author -- Symbols -- Chapter 1: Measuring the Strength of Metals -- 1.1 How Is Strength Measured? -- 1.2 The Tensile Test -- 1.3 Stress in a Test Specimen -- 1.4 Strain in a Test Specimen -- 1.5 The Elastic Stress Versus Strain Curve -- 1.6 The Elastic Modulus -- 1.7 Lateral Strains and Poisson´s Ratio -- 1.8 Defining Strength -- 1.9 Stress-Strain Curve -- 1.10 The True Stress-True Strain Conversion -- 1.11 Example Tension Tests -- 1.12 Accounting for Strain Measurement Errors -- 1.13 Formation of a Neck in a Tensile Specimen -- 1.14 Strain Rate -- 1.15 Summary -- Exercises -- References -- Chapter 2: Structure and Bonding -- 2.1 Forces and Resultant Energies Associated with an Ionic Bond -- 2.2 Elastic Straining and the Force Versus Separation Diagram -- 2.3 Crystal Structure -- 2.4 Plastic Deformation -- 2.5 Dislocations -- 2.6 Summary -- Exercises -- References -- Chapter 3: Contributions to Strength -- 3.1 Strength of a Single Crystal -- 3.2 The Peierls Stress -- 3.3 The Importance of Available Slip Systems and Geometry of HCP Metals -- 3.4 Contributions from Grain Boundaries -- 3.5 Contributions from Impurity Atoms -- 3.6 Contributions from Stored Dislocations -- 3.7 Contributions from Precipitates -- 3.8 Summary -- Exercises -- References -- Chapter 4: Dislocation-Obstacle Interactions -- 4.1 A Simple Dislocation/Obstacle Profile -- 4.2 Thermal Energy-Boltzmann´s Equation -- 4.3 The Implication of 0 K -- 4.4 Addition of a Second Obstacle to a Slip Plane -- 4.5 Kinetics -- 4.6 Analysis of Experimental Data -- 4.7 Multiple Obstacles -- 4.8 Kinetics of Hardening -- 4.9 Summary -- Exercises -- References -- Chapter 5: A Constitutive Law for Metal Deformation.5.1 Constitutive Laws in Engineering Design and Materials Processing -- 5.2 Simple Hardening Models -- 5.3 State Variables -- 5.4 Defining a State Variable in Metal Deformation -- 5.5 The Mechanical Threshold Stress Model -- 5.5.1 Example Material and Constitutive Law -- 5.6 Common Deviations from Model Behavior -- 5.7 Summary -- Exercises -- References -- Chapter 6: Further MTS Model Developments -- 6.1 Removing the Temperature Dependence of the Shear Modulus -- 6.2 Introducing a More Descriptive Obstacle Profile -- 6.3 Dealing with Multiple Obstacles -- 6.4 Defining the Activation Volume in the Presence of Multiple Obstacles Populations -- 6.5 The Evolution Equation -- 6.6 Adiabatic Deformation -- 6.7 Summary -- Exercises -- References -- Chapter 7: Data Analysis: Deriving MTS Model Parameters -- 7.1 A Hypothetical Alloy -- 7.2 Pure Fosium -- 7.3 Hardening in Pure Fosium -- 7.4 Yield Stress Kinetics in Unstrained FoLLyalloy -- 7.5 Hardening in FoLLyalloy -- 7.6 Evaluating the Stored Dislocation Obstacle Population -- 7.7 Deriving the Evolution Equation -- 7.8 The Constitutive Law for FoLLyalloy -- 7.9 Summary -- Exercises -- Chapter 8: Application of MTS Model to Copper and Nickel -- 8.1 Pure Copper -- 8.2 Follansbee and Kocks Experiments -- 8.3 Temperature-Dependent Stress-Strain Curves -- 8.4 Eleiche and Campbell Measurements in Torsion -- 8.5 Analysis of Deformation in Nickel -- 8.6 Predicted Stress-Strain Curves in Nickel and Comparison with Experiment -- 8.7 Application to Shock Deformed Nickel -- 8.8 Deformation in Nickel Plus Carbon Alloys -- 8.9 Monel 400-Analysis of Grain-Size Dependence -- 8.10 Copper-Aluminum Alloys -- 8.11 Summary -- Exercises -- References -- Chapter 9: Application of MTS Model to BCC Metals and Alloys -- 9.1 Pure BCC Metals -- 9.2 Comparison with Campbell and Ferguson Measurements.9.3 Trends in the Activation Volume for Pure BCC Metals -- 9.4 Structure Evolution in BCC Pure Metals and Alloys -- 9.5 Analysis of the Constitutive Behavior of a Fictitious BCC Alloy-UfKonel -- 9.6 Analysis of the Constitutive Behavior of AISI 1018 Steel -- 9.7 Analysis of the Constitutive Behavior of Polycrystalline Vanadium -- 9.8 Deformation Twinning in Vanadium -- 9.9 Signature of Dynamic Strain Aging in Vanadium -- 9.10 Analysis of Deformation Behavior of Polycrystalline Niobium -- 9.11 Summary -- Exercises -- References -- Chapter 10: Application of MTS Model to HCP Metals and Alloys -- 10.1 Pure Zinc -- 10.2 Kinetics of Yield in Pure Cadmium -- 10.3 Structure Evolution in Pure Cadmium -- 10.4 Pure Magnesium -- 10.5 Magnesium Alloy AZ31 -- 10.6 Pure Zirconium -- 10.7 Structure Evolution in Zirconium -- 10.7.1 The Influence of Deformation Twinning on Hardening -- 10.8 Analysis of Deformation in Irradiated Zircaloy-2 -- 10.9 Analysis of Deformation Behavior of Polycrystalline Titanium -- 10.9.1 Dynamic Strain Aging in Polycrystalline Titanium -- 10.10 Analysis of Deformation Behavior of Titanium Alloy Ti6Al-4V -- 10.11 Summary -- Exercises -- References -- Chapter 11: Application of MTS Model to Austenitic Stainless Steels -- 11.1 Variation of Yield Stress with Temperature and Strain Rate in Annealed Materials -- 11.2 Nitrogen in Austenitic Stainless Steels -- 11.3 The Hammond and Sikka Study in 316 -- 11.4 Modeling the Stress-Strain Curve -- 11.5 Dynamic Strain Aging in Austenitic Stainless Steels -- 11.6 Application of the Model to Irradiation-Damaged Material -- 11.7 Summary -- Exercises -- References -- Chapter 12: Application of MTS Model to Nickel-Base Superalloys -- 12.1 Deformation in Nickel-Based Superalloys -- 12.2 Yield Stress Kinetics -- 12.3 Strain Hardening in Several Nickel-Base Superalloys.12.3.1 Strain Hardening in Inconel 600 -- 12.3.2 Strain Hardening in Inconel 718 -- 12.3.3 Yield Stress Kinetics and Strain Hardening in C-276 -- 12.3.4 Yield Stress Kinetics and Strain Hardening in C-22 -- 12.3.5 Potential Origins of High Hardening Rates -- 12.4 Signatures of Dynamic Strain Aging -- 12.5 Summary -- Exercises -- References -- Chapter 13: A Model for Dynamic Strain Aging -- 13.1 Review of Signatures of DSA -- 13.2 Focusing on the Increased Stress Levels Accompanying DSA -- 13.3 Toward a Mechanistic Understanding -- 13.4 Model Predictions -- 13.5 Predicting the Stresses When DSA is Active -- 13.6 Summary -- Appendix 13.A1 The Effect of an Incorrect Assumption on the Analysis Using Eq. 13.15 -- Appendix 13.A2 The Effect of DSA on the Stage II Hardening Rate -- Exercises -- References -- Chapter 14: Application of MTS Model to the Strength of Heavily Deformed Metals -- 14.1 Complications Introduced at Large Deformations -- 14.2 Stress Dependence of the Normalized Activation Energy goε -- 14.3 Addition of Stage IV Hardening to the Evolution Law -- 14.4 Grain Refinement -- 14.5 Application to Large-Strain ECAP Processing of Copper -- 14.5.1 Using the Torsion Curve Rather Than the Compression Curve -- 14.6 Further Insight into the Strain Hardening at High Strains -- 14.7 A Large-Strain Constitutive Description of Nickel -- 14.8 Application to Large-Strain ECAP Processing of Nickel -- 14.9 Application to Large-Strain ECAP Processing of Austenitic Stainless Steel -- 14.10 Analysis of Fine-Grained Processed Tungsten -- 14.11 Summary -- Exercises -- References -- Chapter 15: Summary and Status of Model Development -- 15.1 Analyzing the Temperature-Dependent Yield Stress -- 15.2 Stress Dependence of the Normalized Activation Energy goε -- 15.3 Evolution -- 15.4 Temperature and Strain-Rate Dependence of Evolution (Strain Hardening).15.5 The Effects of Deformation Twinning -- 15.6 The Signature of Dynamic Strain Aging -- 15.7 Adding Insight to Deformation in Nickel-Base Superalloys -- 15.8 Adding Insight to Complex Processing Routes -- 15.9 Temperature Limits -- 15.10 Summary -- References -- Index.This second edition updates and expands on the class-tested first edition text, augmenting discussion of dynamic strain aging and austenitic stainless steels and adding a section on analysis of nickel-base superalloys that shows how the mechanical threshold stress (MTS) model, an internal state variable constitutive formulation, can be used to de-convolute synergistic effects. The new edition retains a clear and rigorous presentation of the theory, mechanistic basis, and application of the MTS model.The Minerals, Metals and Materials Series.Strength of materialsMathematical modelsStrains and stressesStrength of materialsMathematical models.Strains and stresses.620.112Follansbee Paul1368392MiAaPQMiAaPQMiAaPQ9910734865003321Fundamentals of Strength3393905UNINA