Vai al contenuto principale della pagina

Design of Alloy Metals for Low-Mass Structures



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Toth Laszlo Visualizza persona
Titolo: Design of Alloy Metals for Low-Mass Structures Visualizza cluster
Pubblicazione: Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020
Descrizione fisica: 1 electronic resource (460 p.)
Soggetto topico: History of engineering & technology
Soggetto non controllato: Pd–10Au alloy
shear compression
texture
grain boundary sliding
TiAl alloys
dislocation
twinning
nanoindentation
ECCI
disconnection density
displacement discontinuity
crack nucleation
crack opening displacement
digital image correlation
Al-Cu-Li alloys
titanium aluminides
grain refinement
solidification
inoculation
TWIP steel
ECAP
deformation twinning
VPSC
simulation
industrial ingot
steel
dendritic grain size
titanium
strain hardening
anisotropy
strain heterogeneity
acoustic emission
statistical analysis
collective dislocation dynamics
Q&amp
P
transition carbide
precipitation
HEXRD
TEM
grain size
crystal plasticity
elasto-visco-plastic self-consistent (EVPSC) scheme
hardening
dislocation density
ironmaking
direct reduction
iron ore
DRI
shaft furnace
mathematical model
CO2 emissions
lattice structures
porous materials
3D surface maps
finite element
fatigue
plasticity
steel ladle
non-metallic inclusions
aggregation
lateral extrusion ratio
Finite Element (FE) simulation
analytical modelling
plastic flow machining
back pressure
polycrystalline β-Ti
elastic anisotropy
elastic/plastic incompatibilities
elasto-viscoplastic self-consistent scheme (EVPSC)
slip activity
microsegregation
gas tungsten arc welding
directional solidification
FM52 filler metal
ERNiCrFe-7
tip undercooling
rolling
asymmetric ratio
thickness reduction per pass
magnesium powders
HPT consolidation
microstructure
hardness
H-activation
high entropy alloy
crystallographic texture
groove rolling
elastic properties
non-Schmid effects
Taylor multiscale scheme
localized necking
bifurcation theory
excess nitrogen
clusters precipitation
Fe–Si and Fe–Cr nitrided alloys
APT and TEM characterization
metal matrix composite
in situ X-ray diffraction
internal stresses
phase transformation
nickel-based single crystal superalloy
lattice mismatch
in situ experiments
X-ray diffractometry
creep
dislocations
diffraction
fast Fourier transform (FFT)-based method
discrete green operator
voxelization artifacts
sub-voxel method
simulated diffraction peaks
scattered intensity
shape memory alloys
architected cellular material
numerical homogenization
multiscale finite element method
bainite
martensite
isothermal treatment
mechanical properties
austenite reconstruction
variant
magnesium
self consistent methods
modeling
heterogeneous kinetics
heat and mass transfer
Persona (resp. second.): DenisSabine
TothLaszlo
Sommario/riassunto: Nowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ‘Design of Alloy Metals for Low-Mass Structures’, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures.
Titolo autorizzato: Design of Alloy Metals for Low-Mass Structures  Visualizza cluster
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910557522503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui