LEADER 06774nam 2201897z- 450 001 9910557522503321 005 20231214133411.0 035 $a(CKB)5400000000044354 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/68698 035 $a(EXLCZ)995400000000044354 100 $a20202105d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDesign of Alloy Metals for Low-Mass Structures 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 electronic resource (460 p.) 311 $a3-03936-158-9 311 $a3-03936-159-7 330 $aNowadays, 25% of materials used are metals, and this ratio is not expected to decrease, as metals are indispensable for many applications due to their high resistance to temperature. The only handicap of metals is their relatively higher density with respect to composites. Lightening of metallic structures is possible in three ways: (i) employing low density metals, (ii) developing new ones, and (iii) increasing the yield strength of existing high-density metals. The Laboratory of Excellence of the Lorraine University in France, called ?Design of Alloy Metals for Low-Mass Structures?, is working to lighten metal via metallurgical means. Two leading research laboratories compose this Laboratory of Excellence within the Lorraine University: the Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), based in Metz, and the Jean Lamour Institute (IJL), located in Nancy. In this Special Issue, they report on some of their major progress in the different fields of metallurgy and mechanics of metallic materials. There are articles in the three major fields of metallurgy: physical, chemical, and mechanical metallurgy. All scales are covered, from atomistic studies to real-scale metallic structures. 606 $aHistory of engineering & technology$2bicssc 610 $aPd?10Au alloy 610 $ashear compression 610 $atexture 610 $agrain boundary sliding 610 $aTiAl alloys 610 $adislocation 610 $atwinning 610 $ananoindentation 610 $aECCI 610 $adisconnection density 610 $adisplacement discontinuity 610 $acrack nucleation 610 $acrack opening displacement 610 $adigital image correlation 610 $aAl-Cu-Li alloys 610 $atitanium aluminides 610 $agrain refinement 610 $asolidification 610 $ainoculation 610 $aTWIP steel 610 $aECAP 610 $adeformation twinning 610 $aVPSC 610 $asimulation 610 $aindustrial ingot 610 $asteel 610 $adendritic grain size 610 $atitanium 610 $astrain hardening 610 $aanisotropy 610 $astrain heterogeneity 610 $aacoustic emission 610 $astatistical analysis 610 $acollective dislocation dynamics 610 $aQ& 610 $aP 610 $atransition carbide 610 $aprecipitation 610 $aHEXRD 610 $aTEM 610 $agrain size 610 $acrystal plasticity 610 $aelasto-visco-plastic self-consistent (EVPSC) scheme 610 $ahardening 610 $adislocation density 610 $aironmaking 610 $adirect reduction 610 $airon ore 610 $aDRI 610 $ashaft furnace 610 $amathematical model 610 $aCO2 emissions 610 $alattice structures 610 $aporous materials 610 $a3D surface maps 610 $afinite element 610 $afatigue 610 $aplasticity 610 $asteel ladle 610 $anon-metallic inclusions 610 $aaggregation 610 $alateral extrusion ratio 610 $aFinite Element (FE) simulation 610 $aanalytical modelling 610 $aplastic flow machining 610 $aback pressure 610 $apolycrystalline ?-Ti 610 $aelastic anisotropy 610 $aelastic/plastic incompatibilities 610 $aelasto-viscoplastic self-consistent scheme (EVPSC) 610 $aslip activity 610 $amicrosegregation 610 $agas tungsten arc welding 610 $adirectional solidification 610 $aFM52 filler metal 610 $aERNiCrFe-7 610 $atip undercooling 610 $arolling 610 $aasymmetric ratio 610 $athickness reduction per pass 610 $amagnesium powders 610 $aHPT consolidation 610 $amicrostructure 610 $ahardness 610 $aH-activation 610 $ahigh entropy alloy 610 $acrystallographic texture 610 $agroove rolling 610 $aelastic properties 610 $anon-Schmid effects 610 $aTaylor multiscale scheme 610 $alocalized necking 610 $abifurcation theory 610 $aexcess nitrogen 610 $aclusters precipitation 610 $aFe?Si and Fe?Cr nitrided alloys 610 $aAPT and TEM characterization 610 $ametal matrix composite 610 $ain situ X-ray diffraction 610 $ainternal stresses 610 $aphase transformation 610 $anickel-based single crystal superalloy 610 $alattice mismatch 610 $ain situ experiments 610 $aX-ray diffractometry 610 $acreep 610 $adislocations 610 $adiffraction 610 $afast Fourier transform (FFT)-based method 610 $adiscrete green operator 610 $avoxelization artifacts 610 $asub-voxel method 610 $asimulated diffraction peaks 610 $ascattered intensity 610 $ashape memory alloys 610 $aarchitected cellular material 610 $anumerical homogenization 610 $amultiscale finite element method 610 $abainite 610 $amartensite 610 $aisothermal treatment 610 $amechanical properties 610 $aaustenite reconstruction 610 $avariant 610 $amagnesium 610 $aself consistent methods 610 $amodeling 610 $aheterogeneous kinetics 610 $aheat and mass transfer 615 7$aHistory of engineering & technology 700 $aToth$b Laszlo$4edt$0401621 702 $aDenis$b Sabine$4edt 702 $aToth$b Laszlo$4oth 702 $aDenis$b Sabine$4oth 906 $aBOOK 912 $a9910557522503321 996 $aDesign of Alloy Metals for Low-Mass Structures$93027210 997 $aUNINA