Vai al contenuto principale della pagina

Applied multidimensional geological modeling : informing sustainable human interactions with the shallow subsurface / / edited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Applied multidimensional geological modeling : informing sustainable human interactions with the shallow subsurface / / edited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen Visualizza cluster
Pubblicazione: Hoboken, NJ : , : John Wiley & Sons, Inc., , [2021]
©2021
Descrizione fisica: 1 online resource (675 pages)
Disciplina: 550.113
Soggetto topico: Geological modeling - Simulation methods
Geological surveys - Simulation methods
Persona (resp. second.): TurnerA. Keith <1941->
KesslerHolger <1971->
MeulenMichiel J. van der
Nota di contenuto: Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acknowledgments -- Part I Introduction and Background -- Chapter 1 Introduction to Modeling Terminology and Concepts -- 1.1 Mapping or Modeling - Which Is Correct? -- 1.1.1 Definition of the Term "Model" -- 1.1.2 Evolution of the Geological Model Concept -- 1.2 Why Use "Multidimensional"? -- 1.3 Evolution of Digital Geological Modeling -- 1.4 Overview of the Book -- 1.4.1 Intended Audience -- 1.4.2 Part I: Introduction and Background -- 1.4.3 Part II: Building and Managing Models -- 1.4.3.1 Technical Considerations - Chapters 5-8 -- 1.4.3.2 Alternative Model Building Approaches - Chapters 9-12 -- 1.4.3.3 Model Application and Evaluation - Chapters 13-15 -- 1.4.4 Part III: Using and Disseminating Models -- 1.4.5 Part IV: Case Studies -- 1.4.6 Part V: Future Possibilities and Challenges -- References -- Chapter 2 Geological Survey Data and the Move from 2-D to 4-D -- 2.1 Introduction -- 2.2 The Role of Geological Survey Organizations -- 2.2.1 Establishment of Geological Surveys -- 2.2.2 Systematic versus Strategic Mapping Approaches -- 2.2.3 Geological Mapping by Geological Surveys -- 2.2.4 Difficulty in Maintaining Adequate Financial Support -- 2.3 Challenges Facing Geological Survey Organizations -- 2.4 A Geological Map is Not a Piece of Paper -- 2.4.1 Early Geological Maps -- 2.4.2 Early Digital Mapping and Modeling -- 2.4.3 Advantages of Digital Mapping -- 2.5 The Importance of Effective Data Management -- 2.6 The Challenges of Parameterization - Putting Numbers on the Geology -- 2.6.1 Parameterization of Geological Models -- 2.6.2 Model Scale -- 2.6.3 Parameter Heterogeneity -- 2.6.4 Model Uncertainty -- 2.7 Use of 3‐D Geological Models with Process Models -- 2.8 The Evolving Mission of the Geological Survey of the Netherlands.
2.9 Experience With a Multiagency and Multijurisdictional Approach to 3‐D Mapping in the Great Lakes Region -- 2.10 Conclusions -- References -- Chapter 3 Legislation, Regulation, and Management -- 3.1 Introduction -- 3.2 Layers of the Subsurface -- 3.3 Legal Systems -- 3.4 Land Ownership -- 3.5 Regulation and Management -- 3.5.1 Ground Investigation -- 3.5.2 Spatial Planning -- 3.5.3 Natural Resources -- 3.5.4 Environmental and Cultural Issues -- 3.6 Approaches to Subsurface Development -- 3.6.1 Existing Spaces -- 3.6.2 New Developments -- 3.7 Involving Stakeholders -- 3.8 Delivery of Information -- 3.9 The Role of 3‐D Subsurface Models -- 3.10 Conclusions -- References -- Chapter 4 The Economic Case for Establishing Subsurface Ground Conditions and the Use of Geological Models -- 4.1 Introduction -- 4.2 The Nature of Geotechnical Investigations -- 4.2.1 Geotechnical Investigations for Management of Geotechnical Risk -- 4.2.2 How Geological Models Sit Within the Geotechnical Investigation Process -- 4.2.3 Potential Impact of Geotechnical Risks -- 4.3 Benefits of Using 3‐D Models and Establishing Subsurface Ground Conditions -- 4.3.1 Cost of Geotechnical Investigations -- 4.3.2 Geotechnical Baseline Report -- 4.4 Processes, Codes, and Guidelines for Establishing Subsurface Conditions and Managing Risk -- 4.4.1 Risk Reduction Strategies to Manage Deficient Ground Information -- 4.4.2 Investments to Mitigate Against Deficient Ground Information -- 4.4.3 Code Requirements -- 4.5 Examples of the Use of 3‐D Geological Models for Infrastructure Projects -- 4.5.1 Investigating Three‐Dimensional Geological Modeling as a Tool for Consultancy -- 4.5.2 Three‐Dimensional Geological Modeling for a Nuclear Power Facility in Anglesey, Wales, UK, to Enhance Ground Investigation Quality and Optimize Value.
4.5.3 Integrating 3‐D Models Within Project Workflow to Control Geotechnical Risk -- 4.5.4 The Economic Value of Digital Ground Models for Linear Rail Infrastructure Assets in the United Kingdom -- 4.5.5 Employing an Integrated 3‐D Geological Model for the Reference Design of the Silvertown Tunnel, East London -- 4.5.6 A New Dutch Law on Subsurface Information to Enable Better Spatial Planning -- Acknowledgments -- References -- Part II Building and Managing Models -- Chapter 5 Overview and History of 3‐D Modeling Approaches -- 5.1 Introduction -- 5.2 Historical Development of 3‐D Modeling -- 5.2.1 Representation of the Third Dimension -- 5.2.2 Electrical Analog Models -- 5.2.3 The Adoption of Digital Mapping Technologies -- 5.2.4 Evolution of 3‐D Mapping and Modeling Collaborative Forums -- 5.3 The Mahomet Aquifer: An Example of Evolving Subsurface Modeling -- 5.3.1 Early Modeling Efforts -- 5.3.2 Initial 3‐D Geological and Hydrogeological Evaluations -- 5.3.3 Recent Geological and Hydrogeological Models -- 5.4 Digital 3‐D Geological Modeling Approaches Discussed in This Book -- 5.4.1 Stacked‐Surface Approach to Model Creation -- 5.4.2 Modeling Based on Cross‐Sections and Boreholes -- 5.4.3 Three‐Dimensional Gridded Voxel Models -- 5.4.4 Integrated Rule‐Based (Implicit) Geological Models -- References -- Chapter 6 Effective and Efficient Workflows -- 6.1 Introduction -- 6.1.1 Understanding the Geologic Modeling Process -- 6.1.2 Developing Custom Workflows -- 6.2 Operational Considerations -- 6.2.1 User Requirements -- 6.2.2 Defining Mapping Objectives -- 6.2.2.1 Delineation of Model Domain -- 6.2.2.2 Definition of the General Geologic Framework Model -- 6.2.2.3 Determination and Representation of the Desired Model Accuracy -- 6.2.2.4 Consideration of Formats for Final Deliverables -- 6.2.3 Geologic Setting and Natural Complexity.
6.2.4 Existing Data Availability and Management -- 6.2.5 Collection of New Data -- 6.2.6 Staff Availability and Expertise -- 6.3 Selection of Modeling Methods and Software -- 6.4 Products and Distribution -- 6.5 Model Maintenance and Upgrades -- 6.6 Illinois State Geological Survey 3‐D Modeling Workflows -- 6.6.1 Project Objectives -- 6.6.2 Project Schedule -- 6.6.3 Project Staffing Considerations -- 6.6.4 Software Selection -- 6.6.5 Data Assessment -- 6.6.6 Project Deliverables -- 6.6.7 Post‐Project Model Management -- 6.7 Modeling Workflow Solutions by Other Organizations -- 6.7.1 University of Waterloo, Department of Earth and Environmental Sciences -- 6.7.2 Delaware Geological Survey -- 6.7.3 Ontario Geological Survey -- 6.7.4 Geological Survey of Denmark and Greenland -- 6.8 Creating a Custom Workflow -- Acknowledgments -- References -- Chapter 7 Data Sources for Building Geological Models -- 7.1 Introduction -- 7.2 Defining and Classifying Data -- 7.2.1 Data Versus Information -- 7.2.2 Classifying Data -- 7.2.2.1 Spatial Location and Extent Using Points, Lines, and Polygons -- 7.2.2.2 Framework Versus Property Data -- 7.2.2.3 Elevation, Surficial, and Subsurface Data -- 7.3 Legacy Data -- 7.4 Elevation Data -- 7.5 Surficial and Subsurface Geological Data -- 7.5.1 Geological Survey Data -- 7.5.1.1 Map Data -- 7.5.1.2 Boreholes -- 7.5.1.3 Analytical Databases -- 7.5.1.4 Reports and Academic Contributions -- 7.5.1.5 3‐D Models -- 7.5.1.6 Accessibility -- 7.5.2 Soil Data -- 7.5.3 Geotechnical Data -- 7.5.4 Water Well Data -- 7.5.5 Petroleum Data -- 7.6 Geophysical Data -- 7.6.1 Seismic Survey Method -- 7.6.1.1 Seismic Refraction Surveys -- 7.6.1.2 Seismic Reflection Surveys -- 7.6.1.3 Surface Wave Surveys -- 7.6.2 Resistivity Survey Method -- 7.6.3 Electromagnetic Survey Method -- 7.6.3.1 Time Domain Electromagnetic Surveys (TDEM).
7.6.3.2 Frequency Domain Electromagnetic Surveys -- 7.6.3.3 Airborne Electromagnetic Surveys -- 7.6.4 Gravity Surveys -- 7.6.4.1 Ground‐based Gravity Surveys -- 7.6.4.2 Airborne Gravity Surveys -- 7.6.5 Ground Penetrating Radar -- 7.6.6 Borehole Geophysics -- 7.6.6.1 Borehole Geophysical Logging -- 7.6.6.2 In‐hole Seismic Geophysical Logging -- Acknowledgments -- References -- Chapter 8 Data Management Considerations -- 8.1 Introduction -- 8.2 Data Management Methods -- 8.2.1 Standards and Best Practice -- 8.2.2 The Database System -- 8.2.3 Data Modeling -- 8.2.4 Relational Databases -- 8.2.5 Entity‐Relationship Diagrams -- 8.2.6 Normalization Process -- 8.2.7 Denormalization Process -- 8.2.8 Extract, Transform, Load (ETL) Processes -- 8.2.9 Data Warehousing -- 8.2.10 The Important Role of Metadata -- 8.3 Managing Source Data for Modeling -- 8.3.1 Data from Multiple Data Sources -- 8.3.2 Managing the Connectivity among Data Sources -- 8.3.3 Facilitating Sharing of Database Designs -- 8.4 Managing Geological Framework Models -- 8.4.1 BGS Model Database Design Principles -- 8.4.2 Versioning Existing Models -- 8.4.3 Creating New Models Based on Existing Models - "Model Interoperability" -- 8.5 Managing Geological Properties Data and Property Models -- 8.5.1 Characteristics of Property Data Sources and Models -- 8.5.2 Applications within the British Geological Survey -- 8.6 Managing Process Models -- 8.7 Integrated Data Management in the Danish National Groundwater Mapping Program -- 8.8 Transboundary Modeling -- 8.8.1 The H3O Program: Toward Consistency of 3‐D Hydrogeological Models Across the Dutch‐Belgian and Dutch‐German Borders -- 8.8.2 The Polish-German TransGeoTherm Project -- 8.8.3 The GeoMol Project -- Acknowledgments -- References -- Chapter 9 Model Creation Using Stacked Surfaces -- 9.1 Introduction -- 9.2 Rationale for Using Stacked Surfaces.
9.3 Software Functionality to Support Stacked‐Surface Modeling.
Sommario/riassunto: "This book has been developed to provide a citable central source that documents the current capabilities and contributions of several GSO's and other practitioners in industry and academia that are already producing multidimensional geological models. Each of these groups has their own agenda, aims, and remit. They employ a variety of modeling approaches developed in response to local geological characteristics, historical data collections, and economic, societal, and regulatory requirements. The book contents are arranged to provide a "shop window" describing what multidimensional geological modeling can do and the value of this information to a large and varied potential stakeholder community. The subtitle emphasizes that this book focuses on applications related to human interactions with subsurface conditions; these interactions mostly occur in the shallow subsurface, typically considered to be within 100-200 m (300-600 ft) of the surface. This has been defined as the zone of human interaction"--
Titolo autorizzato: Applied multidimensional geological modeling  Visualizza cluster
ISBN: 1-119-16311-0
1-119-16310-2
1-119-16309-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910830813403321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui