LEADER 02374nam 2200577 a 450 001 9910454070303321 005 20200520144314.0 010 $a1-84755-053-3 035 $a(CKB)1000000000704206 035 $a(EBL)1185370 035 $a(SSID)ssj0000379267 035 $a(PQKBManifestationID)11300117 035 $a(PQKBTitleCode)TC0000379267 035 $a(PQKBWorkID)10356873 035 $a(PQKB)10217796 035 $a(MiAaPQ)EBC1185370 035 $a(PPN)198476329 035 $a(Au-PeEL)EBL1185370 035 $a(CaPaEBR)ebr10621253 035 $a(CaONFJC)MIL872346 035 $a(OCoLC)850158651 035 $a(EXLCZ)991000000000704206 100 $a20011217d2001 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChromic phenomena$b[electronic resource] $ethe technological applications of colour chemistry /$fPeter Bamfield 210 $aCambridge $cRoyal Society of Chemistry$dc2001 215 $a1 online resource (395 p.) 300 $aDescription based upon print version of record. 311 $a0-85404-474-4 320 $aIncludes bibliographical references and index. 327 $aFront cover; 00 i-xx; 00_1-6; 01_7-74; 02_75-154; 03_155-244; 04_245-304; 05_305-356; 06_357-362; 07_363-374 330 $aChromic phenomena, or those produced by materials which exhibit colour in response to a chemical or physical stimulus, have increasingly been at the heart of 'high-tec' developments in a variety of fields in the last decade. Many of the newer technologies, which are at the cutting edge of research, are multi-disciplinary, involving researchers from areas as diverse as physics, biology, materials science and electronic engineering. Chromic Phenomena covers five main areas:· Colour change materials, such as photochromic, thermochromic and electrochromic materials· Materials which absorb 606 $aChromic materials 606 $aColor 608 $aElectronic books. 615 0$aChromic materials. 615 0$aColor. 676 $a547.135 700 $aBamfield$b P$g(Peter)$0753550 712 02$aRoyal Society of Chemistry (Great Britain) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910454070303321 996 $aChromic phenomena$92189540 997 $aUNINA LEADER 12061nam 2200541 450 001 9910830813403321 005 20230629222915.0 010 $a1-119-16311-0 010 $a1-119-16310-2 010 $a1-119-16309-9 035 $a(CKB)4330000000009001 035 $a(MiAaPQ)EBC6647282 035 $a(Au-PeEL)EBL6647282 035 $a(OCoLC)1259287445 035 $a(EXLCZ)994330000000009001 100 $a20220317d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aApplied multidimensional geological modeling $einforming sustainable human interactions with the shallow subsurface /$fedited by Alan Keith Turner, Holger Kessler, Michiel J. van der Meulen 210 1$aHoboken, NJ :$cJohn Wiley & Sons, Inc.,$d[2021] 210 4$d©2021 215 $a1 online resource (675 pages) 311 $a1-119-16312-9 327 $aCover -- Title Page -- Copyright -- Contents -- List of Contributors -- Acknowledgments -- Part I Introduction and Background -- Chapter 1 Introduction to Modeling Terminology and Concepts -- 1.1 Mapping or Modeling - Which Is Correct? -- 1.1.1 Definition of the Term "Model" -- 1.1.2 Evolution of the Geological Model Concept -- 1.2 Why Use "Multidimensional"? -- 1.3 Evolution of Digital Geological Modeling -- 1.4 Overview of the Book -- 1.4.1 Intended Audience -- 1.4.2 Part I: Introduction and Background -- 1.4.3 Part II: Building and Managing Models -- 1.4.3.1 Technical Considerations - Chapters 5-8 -- 1.4.3.2 Alternative Model Building Approaches - Chapters 9-12 -- 1.4.3.3 Model Application and Evaluation - Chapters 13-15 -- 1.4.4 Part III: Using and Disseminating Models -- 1.4.5 Part IV: Case Studies -- 1.4.6 Part V: Future Possibilities and Challenges -- References -- Chapter 2 Geological Survey Data and the Move from 2-D to 4-D -- 2.1 Introduction -- 2.2 The Role of Geological Survey Organizations -- 2.2.1 Establishment of Geological Surveys -- 2.2.2 Systematic versus Strategic Mapping Approaches -- 2.2.3 Geological Mapping by Geological Surveys -- 2.2.4 Difficulty in Maintaining Adequate Financial Support -- 2.3 Challenges Facing Geological Survey Organizations -- 2.4 A Geological Map is Not a Piece of Paper -- 2.4.1 Early Geological Maps -- 2.4.2 Early Digital Mapping and Modeling -- 2.4.3 Advantages of Digital Mapping -- 2.5 The Importance of Effective Data Management -- 2.6 The Challenges of Parameterization - Putting Numbers on the Geology -- 2.6.1 Parameterization of Geological Models -- 2.6.2 Model Scale -- 2.6.3 Parameter Heterogeneity -- 2.6.4 Model Uncertainty -- 2.7 Use of 3?D Geological Models with Process Models -- 2.8 The Evolving Mission of the Geological Survey of the Netherlands. 327 $a2.9 Experience With a Multiagency and Multijurisdictional Approach to 3?D Mapping in the Great Lakes Region -- 2.10 Conclusions -- References -- Chapter 3 Legislation, Regulation, and Management -- 3.1 Introduction -- 3.2 Layers of the Subsurface -- 3.3 Legal Systems -- 3.4 Land Ownership -- 3.5 Regulation and Management -- 3.5.1 Ground Investigation -- 3.5.2 Spatial Planning -- 3.5.3 Natural Resources -- 3.5.4 Environmental and Cultural Issues -- 3.6 Approaches to Subsurface Development -- 3.6.1 Existing Spaces -- 3.6.2 New Developments -- 3.7 Involving Stakeholders -- 3.8 Delivery of Information -- 3.9 The Role of 3?D Subsurface Models -- 3.10 Conclusions -- References -- Chapter 4 The Economic Case for Establishing Subsurface Ground Conditions and the Use of Geological Models -- 4.1 Introduction -- 4.2 The Nature of Geotechnical Investigations -- 4.2.1 Geotechnical Investigations for Management of Geotechnical Risk -- 4.2.2 How Geological Models Sit Within the Geotechnical Investigation Process -- 4.2.3 Potential Impact of Geotechnical Risks -- 4.3 Benefits of Using 3?D Models and Establishing Subsurface Ground Conditions -- 4.3.1 Cost of Geotechnical Investigations -- 4.3.2 Geotechnical Baseline Report -- 4.4 Processes, Codes, and Guidelines for Establishing Subsurface Conditions and Managing Risk -- 4.4.1 Risk Reduction Strategies to Manage Deficient Ground Information -- 4.4.2 Investments to Mitigate Against Deficient Ground Information -- 4.4.3 Code Requirements -- 4.5 Examples of the Use of 3?D Geological Models for Infrastructure Projects -- 4.5.1 Investigating Three?Dimensional Geological Modeling as a Tool for Consultancy -- 4.5.2 Three?Dimensional Geological Modeling for a Nuclear Power Facility in Anglesey, Wales, UK, to Enhance Ground Investigation Quality and Optimize Value. 327 $a4.5.3 Integrating 3?D Models Within Project Workflow to Control Geotechnical Risk -- 4.5.4 The Economic Value of Digital Ground Models for Linear Rail Infrastructure Assets in the United Kingdom -- 4.5.5 Employing an Integrated 3?D Geological Model for the Reference Design of the Silvertown Tunnel, East London -- 4.5.6 A New Dutch Law on Subsurface Information to Enable Better Spatial Planning -- Acknowledgments -- References -- Part II Building and Managing Models -- Chapter 5 Overview and History of 3?D Modeling Approaches -- 5.1 Introduction -- 5.2 Historical Development of 3?D Modeling -- 5.2.1 Representation of the Third Dimension -- 5.2.2 Electrical Analog Models -- 5.2.3 The Adoption of Digital Mapping Technologies -- 5.2.4 Evolution of 3?D Mapping and Modeling Collaborative Forums -- 5.3 The Mahomet Aquifer: An Example of Evolving Subsurface Modeling -- 5.3.1 Early Modeling Efforts -- 5.3.2 Initial 3?D Geological and Hydrogeological Evaluations -- 5.3.3 Recent Geological and Hydrogeological Models -- 5.4 Digital 3?D Geological Modeling Approaches Discussed in This Book -- 5.4.1 Stacked?Surface Approach to Model Creation -- 5.4.2 Modeling Based on Cross?Sections and Boreholes -- 5.4.3 Three?Dimensional Gridded Voxel Models -- 5.4.4 Integrated Rule?Based (Implicit) Geological Models -- References -- Chapter 6 Effective and Efficient Workflows -- 6.1 Introduction -- 6.1.1 Understanding the Geologic Modeling Process -- 6.1.2 Developing Custom Workflows -- 6.2 Operational Considerations -- 6.2.1 User Requirements -- 6.2.2 Defining Mapping Objectives -- 6.2.2.1 Delineation of Model Domain -- 6.2.2.2 Definition of the General Geologic Framework Model -- 6.2.2.3 Determination and Representation of the Desired Model Accuracy -- 6.2.2.4 Consideration of Formats for Final Deliverables -- 6.2.3 Geologic Setting and Natural Complexity. 327 $a6.2.4 Existing Data Availability and Management -- 6.2.5 Collection of New Data -- 6.2.6 Staff Availability and Expertise -- 6.3 Selection of Modeling Methods and Software -- 6.4 Products and Distribution -- 6.5 Model Maintenance and Upgrades -- 6.6 Illinois State Geological Survey 3?D Modeling Workflows -- 6.6.1 Project Objectives -- 6.6.2 Project Schedule -- 6.6.3 Project Staffing Considerations -- 6.6.4 Software Selection -- 6.6.5 Data Assessment -- 6.6.6 Project Deliverables -- 6.6.7 Post?Project Model Management -- 6.7 Modeling Workflow Solutions by Other Organizations -- 6.7.1 University of Waterloo, Department of Earth and Environmental Sciences -- 6.7.2 Delaware Geological Survey -- 6.7.3 Ontario Geological Survey -- 6.7.4 Geological Survey of Denmark and Greenland -- 6.8 Creating a Custom Workflow -- Acknowledgments -- References -- Chapter 7 Data Sources for Building Geological Models -- 7.1 Introduction -- 7.2 Defining and Classifying Data -- 7.2.1 Data Versus Information -- 7.2.2 Classifying Data -- 7.2.2.1 Spatial Location and Extent Using Points, Lines, and Polygons -- 7.2.2.2 Framework Versus Property Data -- 7.2.2.3 Elevation, Surficial, and Subsurface Data -- 7.3 Legacy Data -- 7.4 Elevation Data -- 7.5 Surficial and Subsurface Geological Data -- 7.5.1 Geological Survey Data -- 7.5.1.1 Map Data -- 7.5.1.2 Boreholes -- 7.5.1.3 Analytical Databases -- 7.5.1.4 Reports and Academic Contributions -- 7.5.1.5 3?D Models -- 7.5.1.6 Accessibility -- 7.5.2 Soil Data -- 7.5.3 Geotechnical Data -- 7.5.4 Water Well Data -- 7.5.5 Petroleum Data -- 7.6 Geophysical Data -- 7.6.1 Seismic Survey Method -- 7.6.1.1 Seismic Refraction Surveys -- 7.6.1.2 Seismic Reflection Surveys -- 7.6.1.3 Surface Wave Surveys -- 7.6.2 Resistivity Survey Method -- 7.6.3 Electromagnetic Survey Method -- 7.6.3.1 Time Domain Electromagnetic Surveys (TDEM). 327 $a7.6.3.2 Frequency Domain Electromagnetic Surveys -- 7.6.3.3 Airborne Electromagnetic Surveys -- 7.6.4 Gravity Surveys -- 7.6.4.1 Ground?based Gravity Surveys -- 7.6.4.2 Airborne Gravity Surveys -- 7.6.5 Ground Penetrating Radar -- 7.6.6 Borehole Geophysics -- 7.6.6.1 Borehole Geophysical Logging -- 7.6.6.2 In?hole Seismic Geophysical Logging -- Acknowledgments -- References -- Chapter 8 Data Management Considerations -- 8.1 Introduction -- 8.2 Data Management Methods -- 8.2.1 Standards and Best Practice -- 8.2.2 The Database System -- 8.2.3 Data Modeling -- 8.2.4 Relational Databases -- 8.2.5 Entity?Relationship Diagrams -- 8.2.6 Normalization Process -- 8.2.7 Denormalization Process -- 8.2.8 Extract, Transform, Load (ETL) Processes -- 8.2.9 Data Warehousing -- 8.2.10 The Important Role of Metadata -- 8.3 Managing Source Data for Modeling -- 8.3.1 Data from Multiple Data Sources -- 8.3.2 Managing the Connectivity among Data Sources -- 8.3.3 Facilitating Sharing of Database Designs -- 8.4 Managing Geological Framework Models -- 8.4.1 BGS Model Database Design Principles -- 8.4.2 Versioning Existing Models -- 8.4.3 Creating New Models Based on Existing Models - "Model Interoperability" -- 8.5 Managing Geological Properties Data and Property Models -- 8.5.1 Characteristics of Property Data Sources and Models -- 8.5.2 Applications within the British Geological Survey -- 8.6 Managing Process Models -- 8.7 Integrated Data Management in the Danish National Groundwater Mapping Program -- 8.8 Transboundary Modeling -- 8.8.1 The H3O Program: Toward Consistency of 3?D Hydrogeological Models Across the Dutch?Belgian and Dutch?German Borders -- 8.8.2 The Polish-German TransGeoTherm Project -- 8.8.3 The GeoMol Project -- Acknowledgments -- References -- Chapter 9 Model Creation Using Stacked Surfaces -- 9.1 Introduction -- 9.2 Rationale for Using Stacked Surfaces. 327 $a9.3 Software Functionality to Support Stacked?Surface Modeling. 330 $a"This book has been developed to provide a citable central source that documents the current capabilities and contributions of several GSO's and other practitioners in industry and academia that are already producing multidimensional geological models. Each of these groups has their own agenda, aims, and remit. They employ a variety of modeling approaches developed in response to local geological characteristics, historical data collections, and economic, societal, and regulatory requirements. The book contents are arranged to provide a "shop window" describing what multidimensional geological modeling can do and the value of this information to a large and varied potential stakeholder community. The subtitle emphasizes that this book focuses on applications related to human interactions with subsurface conditions; these interactions mostly occur in the shallow subsurface, typically considered to be within 100-200 m (300-600 ft) of the surface. This has been defined as the zone of human interaction"--$cProvided by publisher. 606 $aGeological modeling$xSimulation methods 606 $aGeological surveys$xSimulation methods 615 0$aGeological modeling$xSimulation methods. 615 0$aGeological surveys$xSimulation methods. 676 $a550.113 702 $aTurner$b A. Keith$f1941- 702 $aKessler$b Holger$f1971- 702 $aMeulen$b Michiel J. van der 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830813403321 996 $aApplied multidimensional geological modeling$93940456 997 $aUNINA