Vai al contenuto principale della pagina

The Ricci Flow in Riemannian Geometry [[electronic resource] ] : A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem / / by Ben Andrews, Christopher Hopper



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Andrews Ben Visualizza persona
Titolo: The Ricci Flow in Riemannian Geometry [[electronic resource] ] : A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem / / by Ben Andrews, Christopher Hopper Visualizza cluster
Pubblicazione: Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011
Edizione: 1st ed. 2011.
Descrizione fisica: 1 online resource (XVIII, 302 p. 13 illus., 2 illus. in color.)
Disciplina: 516.3/62
Soggetto topico: Partial differential equations
Differential geometry
Global analysis (Mathematics)
Manifolds (Mathematics)
Partial Differential Equations
Differential Geometry
Global Analysis and Analysis on Manifolds
Persona (resp. second.): HopperChristopher
Note generali: Bibliographic Level Mode of Issuance: Monograph
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: 1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck’s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument.
Sommario/riassunto: This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.
Titolo autorizzato: The Ricci Flow in Riemannian Geometry  Visualizza cluster
ISBN: 3-642-16286-X
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996466514903316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Mathematics, . 0075-8434 ; ; 2011