1.

Record Nr.

UNISA996466514903316

Autore

Andrews Ben

Titolo

The Ricci Flow in Riemannian Geometry [[electronic resource] ] : A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem / / by Ben Andrews, Christopher Hopper

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011

ISBN

3-642-16286-X

Edizione

[1st ed. 2011.]

Descrizione fisica

1 online resource (XVIII, 302 p. 13 illus., 2 illus. in color.)

Collana

Lecture Notes in Mathematics, , 0075-8434 ; ; 2011

Disciplina

516.3/62

Soggetti

Partial differential equations

Differential geometry

Global analysis (Mathematics)

Manifolds (Mathematics)

Partial Differential Equations

Differential Geometry

Global Analysis and Analysis on Manifolds

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck’s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument.

Sommario/riassunto

This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.