LEADER 03619nam 22006495 450 001 996466514903316 005 20200704193241.0 010 $a3-642-16286-X 024 7 $a10.1007/978-3-642-16286-2 035 $a(CKB)2670000000056858 035 $a(SSID)ssj0000450249 035 $a(PQKBManifestationID)11293682 035 $a(PQKBTitleCode)TC0000450249 035 $a(PQKBWorkID)10434315 035 $a(PQKB)10632645 035 $a(DE-He213)978-3-642-16286-2 035 $a(MiAaPQ)EBC3066097 035 $a(PPN)149899475 035 $a(EXLCZ)992670000000056858 100 $a20101109d2011 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe Ricci Flow in Riemannian Geometry$b[electronic resource] $eA Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem /$fby Ben Andrews, Christopher Hopper 205 $a1st ed. 2011. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2011. 215 $a1 online resource (XVIII, 302 p. 13 illus., 2 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2011 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-16285-1 320 $aIncludes bibliographical references and index. 327 $a1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck?s Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument. 330 $aThis book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2011 606 $aPartial differential equations 606 $aDifferential geometry 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aDifferential Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21022 606 $aGlobal Analysis and Analysis on Manifolds$3https://scigraph.springernature.com/ontologies/product-market-codes/M12082 615 0$aPartial differential equations. 615 0$aDifferential geometry. 615 0$aGlobal analysis (Mathematics). 615 0$aManifolds (Mathematics). 615 14$aPartial Differential Equations. 615 24$aDifferential Geometry. 615 24$aGlobal Analysis and Analysis on Manifolds. 676 $a516.3/62 700 $aAndrews$b Ben$4aut$4http://id.loc.gov/vocabulary/relators/aut$0478952 702 $aHopper$b Christopher$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a996466514903316 996 $aThe Ricci Flow in Riemannian Geometry$92597581 997 $aUNISA