Vai al contenuto principale della pagina

Hydrothermal analysis in engineering using control volume finite element method / / Mohsen Sheikholeslami Kandelousi, Davood Domairry Ganji



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Kandelousi Mohsen Sheikholeslami Visualizza persona
Titolo: Hydrothermal analysis in engineering using control volume finite element method / / Mohsen Sheikholeslami Kandelousi, Davood Domairry Ganji Visualizza cluster
Pubblicazione: Amsterdam, [Netherlands] : , : Academic Press, , 2015
©2015
Descrizione fisica: 1 online resource (237 p.)
Disciplina: 620.00151535
Soggetto topico: Finite element method
Fluid dynamics - Mathematical models
Heat - Transmission - Mathematical models
Persona (resp. second.): GanjiDavood Domairry
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references at the end of each chapters and index.
Nota di contenuto: Front Cover; Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method; Copyright; Contents; Nomenclature; Preface; Chapter 1: Control volume finite element method (CVFEM); 1.1. Introduction; 1.2. Discretization: Grid, Mesh, and Cloud; 1.2.1. Grid; 1.2.2. Mesh; 1.2.3. Cloud; 1.3. Element and interpolation shape functions; 1.4. Region of support and control volume; 1.5. Discretization and solution; 1.5.1. Steady-State Advection-Diffusion with Source Terms; 1.5.2. Implementation of Source Terms and Boundary Conditions; 1.5.3. Unsteady Advection-Diffusion with Source Terms
ReferencesChapter 2: CVFEM stream function-vorticity solution; 2.1. CVFEM Stream Function-Vorticity Solution for a Lid-Driven Cavity Flow; 2.1.1. Definition of the Problem and Governing Equation; 2.1.2. The CVFEM Discretization of the Stream Function Equation; 2.1.2.1. Diffusion contributions; 2.1.2.2. Source terms; 2.1.2.3. Boundary conditions; 2.1.3. The CVFEM Discretization of the Vorticity Equation; 2.1.3.1. Diffusion contributions; 2.1.3.2. Advection coefficients; 2.1.3.3. Boundary conditions; 2.1.4. Calculating the Nodal Velocity Field; 2.1.5. Results
2.2. CVFEM stream function-vorticity solution for natural convection2.2.1. Definition of the Problem and Governing Equation; 2.2.2. Effect of Active Parameters; References; Chapter 3: Nanofluid flow and heat transfer in an enclosure; 3.1. Introduction; 3.2. Nanofluid; 3.2.1. Definition of Nanofluid; 3.2.2. Model Description; 3.2.3. Conservation Equations; 3.2.3.1. Single-phase model; 3.2.3.2. Two-phase model; 3.2.3.2.1. Continuity equation; 3.2.3.2.2. Nanoparticle continuity equation; 3.2.3.2.3. Momentum equation; 3.2.3.2.4. Energy equation
3.2.4. Physical Properties of Nanofluids in a Single-Phase Model3.2.4.1. Density; 3.2.4.2. Specific heat capacity; 3.2.4.3. Thermal expansion coefficient; 3.2.4.4. Electrical conductivity; 3.2.4.5. Dynamic viscosity; 3.2.4.6. Thermal conductivity; 3.3. Simulation of nanofluid in vorticity stream function form; 3.3.1. Mathematical Modeling of a Single-Phase Model; 3.3.1.1. Natural convection; 3.3.1.2. Force convection; 3.3.1.3. Mixed convection; 3.3.2. CVFEM for Nanofluid Flow and Heat Transfer (Single-Phase Model)
3.3.2.1. Natural convection heat transfer in a nanofluid-filled, inclined, L-shaped enclosure3.3.2.1.1. Problem definition; 3.3.2.1.2. Effect of active parameters; 3.3.2.2. Natural convection heat transfer in a nanofluid-filled, semiannulus enclosure; 3.3.2.2.1. Problem definition; 3.3.2.2.2. Effect of active parameters; 3.3.3. Two-Phase Model; 3.3.3.1. Natural convection; 3.3.3.2. Force convection; 3.3.3.3. Mixed convection; 3.3.4. CVFEM for Nanofluid Flow and Heat Transfer (Two-Phase Model); 3.3.4.1. Two-phase simulation of nanofluid flow and heat transfer using heatline analysis
3.3.4.1.1. Problem definition
Sommario/riassunto: Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro-
Titolo autorizzato: Hydrothermal analysis in engineering using control volume finite element method  Visualizza cluster
ISBN: 0-08-100361-7
0-12-802950-1
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910809759603321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui