LEADER 05492nam 2200661 450 001 9910809759603321 005 20230120002233.0 010 $a0-08-100361-7 010 $a0-12-802950-1 035 $a(CKB)3710000000368518 035 $a(EBL)1980481 035 $a(SSID)ssj0001468449 035 $a(PQKBManifestationID)11884039 035 $a(PQKBTitleCode)TC0001468449 035 $a(PQKBWorkID)11525501 035 $a(PQKB)10947983 035 $a(MiAaPQ)EBC1980481 035 $a(Au-PeEL)EBL1980481 035 $a(CaPaEBR)ebr11025985 035 $a(CaONFJC)MIL734660 035 $a(OCoLC)905918699 035 $a(EXLCZ)993710000000368518 100 $a20150314h20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHydrothermal analysis in engineering using control volume finite element method /$fMohsen Sheikholeslami Kandelousi, Davood Domairry Ganji 210 1$aAmsterdam, [Netherlands] :$cAcademic Press,$d2015. 210 4$dİ2015 215 $a1 online resource (237 p.) 300 $aDescription based upon print version of record. 311 $a1-336-03374-6 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aFront Cover; Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method; Copyright; Contents; Nomenclature; Preface; Chapter 1: Control volume finite element method (CVFEM); 1.1. Introduction; 1.2. Discretization: Grid, Mesh, and Cloud; 1.2.1. Grid; 1.2.2. Mesh; 1.2.3. Cloud; 1.3. Element and interpolation shape functions; 1.4. Region of support and control volume; 1.5. Discretization and solution; 1.5.1. Steady-State Advection-Diffusion with Source Terms; 1.5.2. Implementation of Source Terms and Boundary Conditions; 1.5.3. Unsteady Advection-Diffusion with Source Terms 327 $aReferencesChapter 2: CVFEM stream function-vorticity solution; 2.1. CVFEM Stream Function-Vorticity Solution for a Lid-Driven Cavity Flow; 2.1.1. Definition of the Problem and Governing Equation; 2.1.2. The CVFEM Discretization of the Stream Function Equation; 2.1.2.1. Diffusion contributions; 2.1.2.2. Source terms; 2.1.2.3. Boundary conditions; 2.1.3. The CVFEM Discretization of the Vorticity Equation; 2.1.3.1. Diffusion contributions; 2.1.3.2. Advection coefficients; 2.1.3.3. Boundary conditions; 2.1.4. Calculating the Nodal Velocity Field; 2.1.5. Results 327 $a2.2. CVFEM stream function-vorticity solution for natural convection2.2.1. Definition of the Problem and Governing Equation; 2.2.2. Effect of Active Parameters; References; Chapter 3: Nanofluid flow and heat transfer in an enclosure; 3.1. Introduction; 3.2. Nanofluid; 3.2.1. Definition of Nanofluid; 3.2.2. Model Description; 3.2.3. Conservation Equations; 3.2.3.1. Single-phase model; 3.2.3.2. Two-phase model; 3.2.3.2.1. Continuity equation; 3.2.3.2.2. Nanoparticle continuity equation; 3.2.3.2.3. Momentum equation; 3.2.3.2.4. Energy equation 327 $a3.2.4. Physical Properties of Nanofluids in a Single-Phase Model3.2.4.1. Density; 3.2.4.2. Specific heat capacity; 3.2.4.3. Thermal expansion coefficient; 3.2.4.4. Electrical conductivity; 3.2.4.5. Dynamic viscosity; 3.2.4.6. Thermal conductivity; 3.3. Simulation of nanofluid in vorticity stream function form; 3.3.1. Mathematical Modeling of a Single-Phase Model; 3.3.1.1. Natural convection; 3.3.1.2. Force convection; 3.3.1.3. Mixed convection; 3.3.2. CVFEM for Nanofluid Flow and Heat Transfer (Single-Phase Model) 327 $a3.3.2.1. Natural convection heat transfer in a nanofluid-filled, inclined, L-shaped enclosure3.3.2.1.1. Problem definition; 3.3.2.1.2. Effect of active parameters; 3.3.2.2. Natural convection heat transfer in a nanofluid-filled, semiannulus enclosure; 3.3.2.2.1. Problem definition; 3.3.2.2.2. Effect of active parameters; 3.3.3. Two-Phase Model; 3.3.3.1. Natural convection; 3.3.3.2. Force convection; 3.3.3.3. Mixed convection; 3.3.4. CVFEM for Nanofluid Flow and Heat Transfer (Two-Phase Model); 3.3.4.1. Two-phase simulation of nanofluid flow and heat transfer using heatline analysis 327 $a3.3.4.1.1. Problem definition 330 $aControl volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro- 606 $aFinite element method 606 $aFluid dynamics$xMathematical models 606 $aHeat$xTransmission$xMathematical models 615 0$aFinite element method. 615 0$aFluid dynamics$xMathematical models. 615 0$aHeat$xTransmission$xMathematical models. 676 $a620.00151535 700 $aKandelousi$b Mohsen Sheikholeslami$01599038 702 $aGanji$b Davood Domairry 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910809759603321 996 $aHydrothermal analysis in engineering using control volume finite element method$93921580 997 $aUNINA