Vai al contenuto principale della pagina

Multiplier convergent series [[electronic resource] /] / Charles Swartz



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Swartz Charles <1938-> Visualizza persona
Titolo: Multiplier convergent series [[electronic resource] /] / Charles Swartz Visualizza cluster
Pubblicazione: Singapore ; ; Hackensack, NJ, : World Scientific, 2009
Descrizione fisica: 1 online resource (264 p.)
Disciplina: 515.35
515/.24
Soggetto topico: Convergence
Multipliers (Mathematical analysis)
Orlicz spaces
Series, Arithmetic
Soggetto genere / forma: Electronic books.
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references (p. 245-249) and index.
Nota di contenuto: Preface; Contents; 1. Introduction; 2. Basic Properties of Multiplier Convergent Series; 3. Applications of Multiplier Convergent Series; 4. The Orlicz-Pettis Theorem; 5. Orlicz-Pettis Theorems for the Strong Topology; 6. Orlicz-Pettis Theorems for Linear Operators; 7. The Hahn-Schur Theorem; 8. Spaces of Multiplier Convergent Series and Multipliers; 9. The Antosik Interchange Theorem; 10. Automatic Continuity of Matrix Mappings; 11. Operator Valued Series and Vector Valued Multipliers; 12. Orlicz-Pettis Theorems for Operator Valued Series; 13. Hahn-Schur Theorems for Operator Valued Series
14. Automatic Continuity for Operator Valued MatricesAppendix A. Topological Vector Spaces; Appendix B. Scalar Sequence Spaces; Appendix C. Vector Valued Sequence Spaces; Appendix D. The Antosik-Mikusinski Matrix Theorems; Appendix E. Drewnowski's Lemma; References; Index
Sommario/riassunto: If ? is a space of scalar-valued sequences, then a series ?j xj in a topological vector space X is ?-multiplier convergent if the series ?j=18 tjxj converges in X for every {tj} e?. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in ?1 are also developed for multiplie
Titolo autorizzato: Multiplier convergent series  Visualizza cluster
ISBN: 1-282-44092-6
9786612440922
981-283-388-9
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910456463503321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui