1.

Record Nr.

UNINA9910456463503321

Autore

Swartz Charles <1938->

Titolo

Multiplier convergent series [[electronic resource] /] / Charles Swartz

Pubbl/distr/stampa

Singapore ; ; Hackensack, NJ, : World Scientific, 2009

ISBN

1-282-44092-6

9786612440922

981-283-388-9

Descrizione fisica

1 online resource (264 p.)

Disciplina

515.35

515/.24

Soggetti

Convergence

Multipliers (Mathematical analysis)

Orlicz spaces

Series, Arithmetic

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 245-249) and index.

Nota di contenuto

Preface; Contents; 1. Introduction; 2. Basic Properties of Multiplier Convergent Series; 3. Applications of Multiplier Convergent Series; 4. The Orlicz-Pettis Theorem; 5. Orlicz-Pettis Theorems for the Strong Topology; 6. Orlicz-Pettis Theorems for Linear Operators; 7. The Hahn-Schur Theorem; 8. Spaces of Multiplier Convergent Series and Multipliers; 9. The Antosik Interchange Theorem; 10. Automatic Continuity of Matrix Mappings; 11. Operator Valued Series and Vector Valued Multipliers; 12. Orlicz-Pettis Theorems for Operator Valued Series; 13. Hahn-Schur Theorems for Operator Valued Series

14. Automatic Continuity for Operator Valued MatricesAppendix A. Topological Vector Spaces; Appendix B. Scalar Sequence Spaces; Appendix C. Vector Valued Sequence Spaces; Appendix D. The Antosik-Mikusinski Matrix Theorems; Appendix E. Drewnowski's Lemma; References; Index

Sommario/riassunto

If ? is a space of scalar-valued sequences, then a series ?j xj in a topological vector space X is ?-multiplier convergent if the series ?j=18



tjxj converges in X for every {tj} e?. This monograph studies properties of such series and gives applications to topics in locally convex spaces and vector-valued measures. A number of versions of the Orlicz-Pettis theorem are derived for multiplier convergent series with respect to various locally convex topologies. Variants of the classical Hahn-Schur theorem on the equivalence of weak and norm convergent series in ?1 are also developed for multiplie