|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910456463503321 |
|
|
Autore |
Swartz Charles <1938-> |
|
|
Titolo |
Multiplier convergent series [[electronic resource] /] / Charles Swartz |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore ; ; Hackensack, NJ, : World Scientific, 2009 |
|
|
|
|
|
|
|
ISBN |
|
1-282-44092-6 |
9786612440922 |
981-283-388-9 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (264 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Convergence |
Multipliers (Mathematical analysis) |
Orlicz spaces |
Series, Arithmetic |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 245-249) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface; Contents; 1. Introduction; 2. Basic Properties of Multiplier Convergent Series; 3. Applications of Multiplier Convergent Series; 4. The Orlicz-Pettis Theorem; 5. Orlicz-Pettis Theorems for the Strong Topology; 6. Orlicz-Pettis Theorems for Linear Operators; 7. The Hahn-Schur Theorem; 8. Spaces of Multiplier Convergent Series and Multipliers; 9. The Antosik Interchange Theorem; 10. Automatic Continuity of Matrix Mappings; 11. Operator Valued Series and Vector Valued Multipliers; 12. Orlicz-Pettis Theorems for Operator Valued Series; 13. Hahn-Schur Theorems for Operator Valued Series |
14. Automatic Continuity for Operator Valued MatricesAppendix A. Topological Vector Spaces; Appendix B. Scalar Sequence Spaces; Appendix C. Vector Valued Sequence Spaces; Appendix D. The Antosik-Mikusinski Matrix Theorems; Appendix E. Drewnowski's Lemma; References; Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
If ? is a space of scalar-valued sequences, then a series ?j xj in a topological vector space X is ?-multiplier convergent if the series ?j=18 |
|
|
|
|