Vai al contenuto principale della pagina

Miniaturized Transistors



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Autore: Grasser Tibor Visualizza persona
Titolo: Miniaturized Transistors Visualizza cluster
Pubblicazione: MDPI - Multidisciplinary Digital Publishing Institute, 2019
Descrizione fisica: 1 electronic resource (202 p.)
Soggetto non controllato: MOSFET
total ionizing dose (TID)
low power consumption
process simulation
two-dimensional material
negative-capacitance
power consumption
technology computer aided design (TCAD)
thin-film transistors (TFTs)
band-to-band tunneling (BTBT)
nanowires
inversion channel
metal oxide semiconductor field effect transistor (MOSFET)
spike-timing-dependent plasticity (STDP)
field effect transistor
segregation
systematic variations
Sentaurus TCAD
indium selenide
nanosheets
technology computer-aided design (TCAD)
high-? dielectric
subthreshold bias range
statistical variations
fin field effect transistor (FinFET)
compact models
non-equilibrium Green's function
etching simulation
highly miniaturized transistor structure
compact model
silicon nanowire
surface potential
Silicon-Germanium source/drain (SiGe S/D)
nanowire
plasma-aided molecular beam epitaxy (MBE)
phonon scattering
mobility
silicon-on-insulator
drain engineered
device simulation
variability
semi-floating gate
synaptic transistor
neuromorphic system
theoretical model
CMOS
ferroelectrics
tunnel field-effect transistor (TFET)
SiGe
metal gate granularity
buried channel
ON-state
bulk NMOS devices
ambipolar
piezoelectrics
tunnel field effect transistor (TFET)
FinFETs
polarization
field-effect transistor
line edge roughness
random discrete dopants
radiation hardened by design (RHBD)
low energy
flux calculation
doping incorporation
low voltage
topography simulation
MOS devices
low-frequency noise
high-k
layout
level set
process variations
subthreshold
metal gate stack
electrostatic discharge (ESD)
Persona (resp. second.): FilipovicLado
Sommario/riassunto: What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications.
Titolo autorizzato: Miniaturized Transistors  Visualizza cluster
ISBN: 3-03921-011-4
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 9910346680003321
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui