top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Compatibilità elettromagnetica : concetti fondamentali di elettromagnetismo, applicazioni progettuali / Clayton R. Paul
Compatibilità elettromagnetica : concetti fondamentali di elettromagnetismo, applicazioni progettuali / Clayton R. Paul
Autore Paul, Clayton R.
Pubbl/distr/stampa Milano : Ulrico Hoepli, c1995
Descrizione fisica xiv, 785 p. : ill. ; 25 cm
Disciplina 621.38224
Collana Biblioteca Scientifica Hoepli
Soggetto topico Electronic circuits - Noise
Electromagnetic compatibility
Digital electronics
ISBN 8820322102
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNISALENTO-991000668849707536
Paul, Clayton R.  
Milano : Ulrico Hoepli, c1995
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Inductance : loop and partial / / Clayton R. Paul
Inductance : loop and partial / / Clayton R. Paul
Autore Paul Clayton R.
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : J. Wiley, , c2010
Descrizione fisica 1 online resource (395 p.)
Disciplina 537.6
621.3742
Soggetto topico Inductance
Induction coils
ISBN 1-118-21128-6
1-282-68659-3
9786612686597
0-470-56123-8
0-470-56122-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Introduction -- 1.1 Historical Background -- 1.2 Fundamental Concepts of Lumped Circuits -- 1.3 Outline of the Book -- 1.4 "Loop" Inductance vs. "Partial" Inductance -- 2 Magnetic Fields of DC Currents (Steady Flow of Charge) -- 2.1 Magnetic Field Vectors and Properties of Materials -- 2.2 Gauss's Law for the Magnetic Field and the Surface Integral -- 2.3 The Biot-Savart Law -- 2.4 Ampére's Law and the Line Integral -- 2.5 Vector Magnetic Potential -- 2.5.1 Leibnitz's Rule: Differentiate Before You Integrate -- 2.6 Determining the Inductance of a Current Loop: -- A Preliminary Discussion -- 2.7 Energy Stored in the Magnetic Field -- 2.8 The Method of Images -- 2.9 Steady (DC) Currents Must Form Closed Loops -- 3 Fields of Time-Varying Currents (Accelerated Charge) -- 3.1 Faraday's Fundamental Law of Induction -- 3.2 Ampère's Law and Displacement Current -- 3.3 Waves, Wavelength, Time Delay, and Electrical Dimensions -- 3.4 How Can Results Derived Using Static (DC) Voltages and Currents be Used in Problems Where the Voltages and Currents are Varying with Time? -- 3.5 Vector Magnetic Potential for Time-Varying Currents -- 3.6 Conservation of Energy and Poynting's Theorem -- 3.7 Inductance of a Conducting Loop -- 4 The Concept of "Loop" Inductance -- 4.1 Self Inductance of a Current Loop from Faraday's Law of Induction -- 4.1.1 Rectangular Loop -- 4.1.2 Circular Loop -- 4.1.3 Coaxial Cable -- 4.2 The Concept of Flux Linkages for Multiturn Loops -- 4.2.1 Solenoid -- 4.2.2 Toroid -- 4.3 Loop Inductance Using the Vector Magnetic Potential -- 4.3.1 Rectangular Loop -- 4.3.2 Circular Loop -- 4.4 Neumann Integral for Self and Mutual Inductances Between Current Loops -- 4.4.1 Mutual Inductance Between Two Circular Loops -- 4.4.2 Self Inductance of the Rectangular Loop -- 4.4.3 Self Inductance of the Circular Loop -- 4.5 Internal Inductance vs. External Inductance -- 4.6 Use of Filamentary Currents and Current Redistribution Due to the Proximity Effect -- 4.6.1 Two-Wire Transmission Line.
4.6.2 One Wire Above a Ground Plane -- 4.7 Energy Storage Method for Computing Loop Inductance -- 4.7.1 Internal Inductance of a Wire -- 4.7.2 Two-Wire Transmission Line -- 4.7.3 Coaxial Cable -- 4.8 Loop Inductance Matrix for Coupled Current Loops -- 4.8.1 Dot Convention -- 4.8.2 Multiconductor Transmission Lines -- 4.9 Loop Inductances of Printed Circuit Board Lands -- 4.10 Summary of Methods for Computing Loop Inductance -- 4.10.1 Mutual Inductance Between Two Rectangular Loops -- 5 The Concept of "Partial" Inductance -- 5.1 General Meaning of Partial Inductance -- 5.2 Physical Meaning of Partial Inductance -- 5.3 Self Partial Inductance of Wires -- 5.4 Mutual Partial Inductance Between Parallel Wires -- 5.5 Mutual Partial Inductance Between Parallel Wires that are Offset -- 5.6 Mutual Partial Inductance Between Wires at an Angle to Each Other -- 5.7 Numerical Values of Partial Inductances and Significance of Internal Inductance -- 5.8 Constructing Lumped Equivalent Circuits with Partial Inductances -- 6 Partial Inductances of Conductors of Rectangular Cross Section -- 6.1 Formulation for the Computation of the Partial Inductances of PCB Lands -- 6.2 Self Partial Inductance of PCB Lands -- 6.3 Mutual Partial Inductance Between PCB Lands -- 6.4 Concept of Geometric Mean Distance -- 6.4.1 Geometrical Mean Distance Between a Shape and Itself and the Self Partial Inductance of a Shape -- 6.4.2 Geometrical Mean Distance and Mutual Partial Inductance Between Two Shapes -- 6.5 Computing the High-Frequency Partial Inductances of Lands and Numerical Methods -- 7 "Loop" Inductance vs. "Partial" Inductance -- 7.1 Loop Inductance vs. Partial Inductance: Intentional Inductors vs. Nonintentional Inductors -- 7.2 To Compute "Loop" Inductance, the "Return Path" for the Current Must be Determined -- 7.3 Generally, There is no Unique Return Path for all Frequencies, Thereby Complicating the Calculation of a "Loop" Inductance -- 7.4 Computing the "Ground Bounce" and "Power Rail Collapse" of a Digital Power Distribution System Using "Loop" Inductances.
7.5 Where Should the "Loop" Inductance of the Closed Current Path be Placed When Developing a Lumped-Circuit Model of a Signal or Power Delivery Path? -- 7.6 How Can a Lumped-Circuit Model of a Complicated System of a Large Number of Tightly Coupled Current Loops be Constructed Using "Loop" Inductance? -- 7.7 Modeling Vias on PCBs -- 7.8 Modeling Pins in Connectors -- 7.9 Net Self Inductance of Wires in Parallel and in Series -- 7.10 Computation of Loop Inductances for Various Loop Shapes -- 7.11 Final Example: Use of Loop and Partial Inductance to Solve a Problem -- Appendix A: Fundamental Concepts of Vectors -- A.1 Vectors and Coordinate Systems -- A.2 Line Integral -- A.3 Surface Integral -- A.4 Divergence -- A.4.1 Divergence Theorem -- A.5 Curl -- A.5.1 Stokes's Theorem -- A.6 Gradient of a Scalar Field -- A.7 Important Vector Identities -- A.8 Cylindrical Coordinate System -- A.9 Spherical Coordinate System -- Table of Identities, Derivatives, and Integrals Used in this Book -- References and Further Readings -- Index.
Record Nr. UNINA-9910139472603321
Paul Clayton R.  
Hoboken, New Jersey : , : J. Wiley, , c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Inductance : loop and partial / Clayton R. Paul
Inductance : loop and partial / Clayton R. Paul
Autore Paul, Clayton R.
Pubbl/distr/stampa Hoboken, : Wiley, [2010]
Descrizione fisica XIII, 379 p. : ill. ; 25 cm
ISBN 978-04-7046-188-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNICAMPANIA-VAN0260881
Paul, Clayton R.  
Hoboken, : Wiley, [2010]
Materiale a stampa
Lo trovi qui: Univ. Vanvitelli
Opac: Controlla la disponibilità qui
Inductance : loop and partial / / Clayton R. Paul
Inductance : loop and partial / / Clayton R. Paul
Autore Paul Clayton R.
Edizione [1st edition]
Pubbl/distr/stampa Hoboken, New Jersey : , : J. Wiley, , c2010
Descrizione fisica 1 online resource (395 p.)
Disciplina 537.6
621.3742
Soggetto topico Inductance
Induction coils
ISBN 1-118-21128-6
1-282-68659-3
9786612686597
0-470-56123-8
0-470-56122-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- 1 Introduction -- 1.1 Historical Background -- 1.2 Fundamental Concepts of Lumped Circuits -- 1.3 Outline of the Book -- 1.4 "Loop" Inductance vs. "Partial" Inductance -- 2 Magnetic Fields of DC Currents (Steady Flow of Charge) -- 2.1 Magnetic Field Vectors and Properties of Materials -- 2.2 Gauss's Law for the Magnetic Field and the Surface Integral -- 2.3 The Biot-Savart Law -- 2.4 Ampére's Law and the Line Integral -- 2.5 Vector Magnetic Potential -- 2.5.1 Leibnitz's Rule: Differentiate Before You Integrate -- 2.6 Determining the Inductance of a Current Loop: -- A Preliminary Discussion -- 2.7 Energy Stored in the Magnetic Field -- 2.8 The Method of Images -- 2.9 Steady (DC) Currents Must Form Closed Loops -- 3 Fields of Time-Varying Currents (Accelerated Charge) -- 3.1 Faraday's Fundamental Law of Induction -- 3.2 Ampère's Law and Displacement Current -- 3.3 Waves, Wavelength, Time Delay, and Electrical Dimensions -- 3.4 How Can Results Derived Using Static (DC) Voltages and Currents be Used in Problems Where the Voltages and Currents are Varying with Time? -- 3.5 Vector Magnetic Potential for Time-Varying Currents -- 3.6 Conservation of Energy and Poynting's Theorem -- 3.7 Inductance of a Conducting Loop -- 4 The Concept of "Loop" Inductance -- 4.1 Self Inductance of a Current Loop from Faraday's Law of Induction -- 4.1.1 Rectangular Loop -- 4.1.2 Circular Loop -- 4.1.3 Coaxial Cable -- 4.2 The Concept of Flux Linkages for Multiturn Loops -- 4.2.1 Solenoid -- 4.2.2 Toroid -- 4.3 Loop Inductance Using the Vector Magnetic Potential -- 4.3.1 Rectangular Loop -- 4.3.2 Circular Loop -- 4.4 Neumann Integral for Self and Mutual Inductances Between Current Loops -- 4.4.1 Mutual Inductance Between Two Circular Loops -- 4.4.2 Self Inductance of the Rectangular Loop -- 4.4.3 Self Inductance of the Circular Loop -- 4.5 Internal Inductance vs. External Inductance -- 4.6 Use of Filamentary Currents and Current Redistribution Due to the Proximity Effect -- 4.6.1 Two-Wire Transmission Line.
4.6.2 One Wire Above a Ground Plane -- 4.7 Energy Storage Method for Computing Loop Inductance -- 4.7.1 Internal Inductance of a Wire -- 4.7.2 Two-Wire Transmission Line -- 4.7.3 Coaxial Cable -- 4.8 Loop Inductance Matrix for Coupled Current Loops -- 4.8.1 Dot Convention -- 4.8.2 Multiconductor Transmission Lines -- 4.9 Loop Inductances of Printed Circuit Board Lands -- 4.10 Summary of Methods for Computing Loop Inductance -- 4.10.1 Mutual Inductance Between Two Rectangular Loops -- 5 The Concept of "Partial" Inductance -- 5.1 General Meaning of Partial Inductance -- 5.2 Physical Meaning of Partial Inductance -- 5.3 Self Partial Inductance of Wires -- 5.4 Mutual Partial Inductance Between Parallel Wires -- 5.5 Mutual Partial Inductance Between Parallel Wires that are Offset -- 5.6 Mutual Partial Inductance Between Wires at an Angle to Each Other -- 5.7 Numerical Values of Partial Inductances and Significance of Internal Inductance -- 5.8 Constructing Lumped Equivalent Circuits with Partial Inductances -- 6 Partial Inductances of Conductors of Rectangular Cross Section -- 6.1 Formulation for the Computation of the Partial Inductances of PCB Lands -- 6.2 Self Partial Inductance of PCB Lands -- 6.3 Mutual Partial Inductance Between PCB Lands -- 6.4 Concept of Geometric Mean Distance -- 6.4.1 Geometrical Mean Distance Between a Shape and Itself and the Self Partial Inductance of a Shape -- 6.4.2 Geometrical Mean Distance and Mutual Partial Inductance Between Two Shapes -- 6.5 Computing the High-Frequency Partial Inductances of Lands and Numerical Methods -- 7 "Loop" Inductance vs. "Partial" Inductance -- 7.1 Loop Inductance vs. Partial Inductance: Intentional Inductors vs. Nonintentional Inductors -- 7.2 To Compute "Loop" Inductance, the "Return Path" for the Current Must be Determined -- 7.3 Generally, There is no Unique Return Path for all Frequencies, Thereby Complicating the Calculation of a "Loop" Inductance -- 7.4 Computing the "Ground Bounce" and "Power Rail Collapse" of a Digital Power Distribution System Using "Loop" Inductances.
7.5 Where Should the "Loop" Inductance of the Closed Current Path be Placed When Developing a Lumped-Circuit Model of a Signal or Power Delivery Path? -- 7.6 How Can a Lumped-Circuit Model of a Complicated System of a Large Number of Tightly Coupled Current Loops be Constructed Using "Loop" Inductance? -- 7.7 Modeling Vias on PCBs -- 7.8 Modeling Pins in Connectors -- 7.9 Net Self Inductance of Wires in Parallel and in Series -- 7.10 Computation of Loop Inductances for Various Loop Shapes -- 7.11 Final Example: Use of Loop and Partial Inductance to Solve a Problem -- Appendix A: Fundamental Concepts of Vectors -- A.1 Vectors and Coordinate Systems -- A.2 Line Integral -- A.3 Surface Integral -- A.4 Divergence -- A.4.1 Divergence Theorem -- A.5 Curl -- A.5.1 Stokes's Theorem -- A.6 Gradient of a Scalar Field -- A.7 Important Vector Identities -- A.8 Cylindrical Coordinate System -- A.9 Spherical Coordinate System -- Table of Identities, Derivatives, and Integrals Used in this Book -- References and Further Readings -- Index.
Record Nr. UNINA-9910830602103321
Paul Clayton R.  
Hoboken, New Jersey : , : J. Wiley, , c2010
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to electromagnetic compatibility / Clayton R. Paul, Robert C.Scully, Mark A.Steffka
Introduction to electromagnetic compatibility / Clayton R. Paul, Robert C.Scully, Mark A.Steffka
Autore PAUL, Clayton R.
Edizione [3.ed.]
Pubbl/distr/stampa New York [etc.], : Wiley, 2023
Descrizione fisica XIV, 833 p. : ill. ; 32 cm
Disciplina 621.38224
Soggetto topico Circuiti elettrici - Disturbi
Compatibilità elettromagnetica
ISBN 978-1-119-40434-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996508472603316
PAUL, Clayton R.  
New York [etc.], : Wiley, 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Introduction to electromagnetic compatibility / Clayton R. Paul
Introduction to electromagnetic compatibility / Clayton R. Paul
Autore Paul, Clayton R.
Edizione [2. ed.]
Pubbl/distr/stampa Hoboken, NJ : Wiley, c2006
Descrizione fisica XXI, 983 p. : ill. ; 25 cm + Cd-Rom
Disciplina 621.382
Collana Wiley series in microwave and optical engineering
Soggetto non controllato Compatibilità elettronica
Campo elettromagnetico
ISBN 978-0-471-75500-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNIPARTHENOPE-000009037
Paul, Clayton R.  
Hoboken, NJ : Wiley, c2006
Materiale a stampa
Lo trovi qui: Univ. Parthenope
Opac: Controlla la disponibilità qui
Introduction to electromagnetic compatibility / Clayton R. Paul
Introduction to electromagnetic compatibility / Clayton R. Paul
Autore Paul, Clayton R.
Edizione [2. ed.]
Pubbl/distr/stampa Hoboken : Wiley, 2006
Descrizione fisica XXI, 983 p. : ill. ; 25 cm + 1 CD-ROM
Disciplina 621.38224
Collana Wiley series in microwave and optical engineering
Soggetto non controllato ElettromagnetismoCompatibilità
ISBN 0471755001
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Titolo uniforme
Record Nr. UNIPARTHENOPE-000026152
Paul, Clayton R.  
Hoboken : Wiley, 2006
Materiale a stampa
Lo trovi qui: Univ. Parthenope
Opac: Controlla la disponibilità qui
Introduction to electromagnetic compatibility [[electronic resource] /] / Clayton R. Paul
Introduction to electromagnetic compatibility [[electronic resource] /] / Clayton R. Paul
Autore Paul Clayton R
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (1013 p.)
Disciplina 621.382/24
621.38224
Collana Wiley series in microwave and optical engineering
Soggetto topico Electromagnetic compatibility
Electronic circuits - Noise
Digital electronics
Shielding (Electricity)
ISBN 1-280-28820-5
9786610288205
1-61344-509-1
0-470-36407-6
0-471-75815-9
0-471-75814-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Electromagnetic Compatibility Second Edition; Contents; Preface; 1 Introduction to Electromagnetic Compatibility (EMC); 1.1 Aspects of EMC; 1.2 History of EMC; 1.3 Examples; 1.4 Electrical Dimensions and Waves; 1.5 Decibels and Common EMC Units; 1.5.1 Power Loss in Cables; 1.5.2 Signal Source Specification; Problems; References; 2 EMC Requirements for Electronic Systems; 2.1 Governmental Requirements; 2.1.1 Requirements for Commercial Products Marketed in the United States; 2.1.2 Requirements for Commercial Products Marketed outside the United States
2.1.3 Requirements for Military Products Marketed in the United States2.1.4 Measurement of Emissions for Verification of Compliance; 2.1.4.1 Radiated Emissions; 2.1.4.2 Conducted Emissions; 2.1.5 Typical Product Emissions; 2.1.6 A Simple Example to Illustrate the Difficulty in Meeting the Regulatory Limits; 2.2 Additional Product Requirements; 2.2.1 Radiated Susceptibility (Immunity); 2.2.2 Conducted Susceptibility (Immunity); 2.2.3 Electrostatic Discharge (ESD); 2.2.4 Requirements for Commercial Aircraft; 2.2.5 Requirements for Commercial Vehicles; 2.3 Design Constraints for Products
2.4 Advantages of EMC DesignProblems; References; 3 Signal Spectra-the Relationship between the Time Domain and the Frequency Domain; 3.1 Periodic Signals; 3.1.1 The Fourier Series Representation of Periodic Signals; 3.1.2 Response of Linear Systems to Periodic Input Signals; 3.1.3 Important Computational Techniques; 3.2 Spectra of Digital Waveforms; 3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms; 3.2.2 Spectral Bounds for Trapezoidal Waveforms; 3.2.2.1 Effect of Rise/Falltime on Spectral Content; 3.2.2.2 Bandwidth of Digital Waveforms; 3.2.2.3 Effect of Repetition Rate and Duty Cycle
3.2.2.4 Effect of Ringing (Undershoot/Overshoot)3.2.3 Use of Spectral Bounds in Computing Bounds on the Output Spectrum of a Linear System; 3.3 Spectrum Analyzers; 3.3.1 Basic Principles; 3.3.2 Peak versus Quasi-Peak versus Average; 3.4 Representation of Nonperiodic Waveforms; 3.4.1 The Fourier Transform; 3.4.2 Response of Linear Systems to Nonperiodic Inputs; 3.5 Representation of Random (Data) Signals; 3.6 Use of SPICE (PSPICE) In Fourier Analysis; Problems; References; 4 Transmission Lines and Signal Integrity; 4.1 The Transmission-Line Equations; 4.2 The Per-Unit-Length Parameters
4.2.1 Wire-Type Structures4.2.2 Printed Circuit Board (PCB) Structures; 4.3 The Time-Domain Solution; 4.3.1 Graphical Solutions; 4.3.2 The SPICE Model; 4.4 High-Speed Digital Interconnects and Signal Integrity; 4.4.1 Effect of Terminations on the Line Waveforms; 4.4.1.1 Effect of Capacitive Terminations; 4.4.1.2 Effect of Inductive Terminations; 4.4.2 Matching Schemes for Signal Integrity; 4.4.3 When Does the Line Not Matter, i.e., When is Matching Not Required?; 4.4.4 Effects of Line Discontinuities; 4.5 Sinusoidal Excitation of the Line and the Phasor Solution
4.5.1 Voltage and Current as Functions of Position
Record Nr. UNINA-9910143404503321
Paul Clayton R  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to electromagnetic compatibility [[electronic resource] /] / Clayton R. Paul
Introduction to electromagnetic compatibility [[electronic resource] /] / Clayton R. Paul
Autore Paul Clayton R
Edizione [2nd ed.]
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2006
Descrizione fisica 1 online resource (1013 p.)
Disciplina 621.382/24
621.38224
Collana Wiley series in microwave and optical engineering
Soggetto topico Electromagnetic compatibility
Electronic circuits - Noise
Digital electronics
Shielding (Electricity)
ISBN 1-280-28820-5
9786610288205
1-61344-509-1
0-470-36407-6
0-471-75815-9
0-471-75814-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Electromagnetic Compatibility Second Edition; Contents; Preface; 1 Introduction to Electromagnetic Compatibility (EMC); 1.1 Aspects of EMC; 1.2 History of EMC; 1.3 Examples; 1.4 Electrical Dimensions and Waves; 1.5 Decibels and Common EMC Units; 1.5.1 Power Loss in Cables; 1.5.2 Signal Source Specification; Problems; References; 2 EMC Requirements for Electronic Systems; 2.1 Governmental Requirements; 2.1.1 Requirements for Commercial Products Marketed in the United States; 2.1.2 Requirements for Commercial Products Marketed outside the United States
2.1.3 Requirements for Military Products Marketed in the United States2.1.4 Measurement of Emissions for Verification of Compliance; 2.1.4.1 Radiated Emissions; 2.1.4.2 Conducted Emissions; 2.1.5 Typical Product Emissions; 2.1.6 A Simple Example to Illustrate the Difficulty in Meeting the Regulatory Limits; 2.2 Additional Product Requirements; 2.2.1 Radiated Susceptibility (Immunity); 2.2.2 Conducted Susceptibility (Immunity); 2.2.3 Electrostatic Discharge (ESD); 2.2.4 Requirements for Commercial Aircraft; 2.2.5 Requirements for Commercial Vehicles; 2.3 Design Constraints for Products
2.4 Advantages of EMC DesignProblems; References; 3 Signal Spectra-the Relationship between the Time Domain and the Frequency Domain; 3.1 Periodic Signals; 3.1.1 The Fourier Series Representation of Periodic Signals; 3.1.2 Response of Linear Systems to Periodic Input Signals; 3.1.3 Important Computational Techniques; 3.2 Spectra of Digital Waveforms; 3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms; 3.2.2 Spectral Bounds for Trapezoidal Waveforms; 3.2.2.1 Effect of Rise/Falltime on Spectral Content; 3.2.2.2 Bandwidth of Digital Waveforms; 3.2.2.3 Effect of Repetition Rate and Duty Cycle
3.2.2.4 Effect of Ringing (Undershoot/Overshoot)3.2.3 Use of Spectral Bounds in Computing Bounds on the Output Spectrum of a Linear System; 3.3 Spectrum Analyzers; 3.3.1 Basic Principles; 3.3.2 Peak versus Quasi-Peak versus Average; 3.4 Representation of Nonperiodic Waveforms; 3.4.1 The Fourier Transform; 3.4.2 Response of Linear Systems to Nonperiodic Inputs; 3.5 Representation of Random (Data) Signals; 3.6 Use of SPICE (PSPICE) In Fourier Analysis; Problems; References; 4 Transmission Lines and Signal Integrity; 4.1 The Transmission-Line Equations; 4.2 The Per-Unit-Length Parameters
4.2.1 Wire-Type Structures4.2.2 Printed Circuit Board (PCB) Structures; 4.3 The Time-Domain Solution; 4.3.1 Graphical Solutions; 4.3.2 The SPICE Model; 4.4 High-Speed Digital Interconnects and Signal Integrity; 4.4.1 Effect of Terminations on the Line Waveforms; 4.4.1.1 Effect of Capacitive Terminations; 4.4.1.2 Effect of Inductive Terminations; 4.4.2 Matching Schemes for Signal Integrity; 4.4.3 When Does the Line Not Matter, i.e., When is Matching Not Required?; 4.4.4 Effects of Line Discontinuities; 4.5 Sinusoidal Excitation of the Line and the Phasor Solution
4.5.1 Voltage and Current as Functions of Position
Record Nr. UNINA-9910677904303321
Paul Clayton R  
Hoboken, N.J., : Wiley-Interscience, c2006
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to electromagnetic compatibility / Clayton R. Paul
Introduction to electromagnetic compatibility / Clayton R. Paul
Autore Paul, Clayton R. <1941- >
Pubbl/distr/stampa New York : Wiley & sons, ©1992
Descrizione fisica XVII, 765 p. : ill. ; 24 cm
Disciplina 621.382'24
Collana Wiley series in microwave and optical engineering
Soggetto non controllato Circuiti elettronici
Elettronica digitale
Compatibilità elettromagnetica
ISBN 0-471-54927-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-990000521370403321
Paul, Clayton R. <1941- >  
New York : Wiley & sons, ©1992
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui