Vai al contenuto principale della pagina
| Autore: |
Yu Han
|
| Titolo: |
Federated Learning in the Age of Foundation Models - FL 2024 International Workshops : FL@FM-WWW 2024, Singapore, May 14, 2024; FL@FM-ICME 2024, Niagara Falls, ON, Canada, July 15, 2024; FL@FM-IJCAI 2024, Jeju Island, South Korea, August 5, 2024; and FL@FM-NeurIPS 2024, Vancouver, BC, Canada, December 15, 2024, Revised Selected Papers / / edited by Han Yu, Xiaoxiao Li, Zenglin Xu, Randy Goebel, Irwin King
|
| Pubblicazione: | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025 |
| Edizione: | 1st ed. 2025. |
| Descrizione fisica: | 1 online resource (295 pages) |
| Disciplina: | 006.3 |
| Soggetto topico: | Artificial intelligence |
| Artificial Intelligence | |
| Altri autori: |
LiXiaoxiao
XuZenglin
GoebelRandy
KingIrwin
|
| Sommario/riassunto: | This LNAI volume constitutes the post proceedings of International Federated Learning Workshops such as follows: FL@FM-WWW 2024, FL@FM-ICME 2024, FL@FM-IJCAI 2024 and FL@FM-NeurIPS 2024. This LNAI volume focuses on the following topics: Efficient Model Adaptation and Personalization, Data Heterogeneity and Incomplete Data, Integration of Specialized Neural Architectures, Frameworks and Tools for Federated Learning, Applications in Domain-Specific Contexts, Unsupervised and Lightweight Learning, and Causal Discovery and Black-Box Optimization. . |
| Titolo autorizzato: | Federated Learning in the Age of Foundation Models - FL 2024 International Workshops ![]() |
| ISBN: | 9783031822407 |
| 9783031822391 | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 996647970203316 |
| Lo trovi qui: | Univ. di Salerno |
| Opac: | Controlla la disponibilità qui |