1.

Record Nr.

UNISA996647970203316

Autore

Yu Han

Titolo

Federated Learning in the Age of Foundation Models - FL 2024 International Workshops : FL@FM-WWW 2024, Singapore, May 14, 2024; FL@FM-ICME 2024, Niagara Falls, ON, Canada, July 15, 2024; FL@FM-IJCAI 2024, Jeju Island, South Korea, August 5, 2024; and FL@FM-NeurIPS 2024, Vancouver, BC, Canada, December 15, 2024, Revised Selected Papers / / edited by Han Yu, Xiaoxiao Li, Zenglin Xu, Randy Goebel, Irwin King

Pubbl/distr/stampa

Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025

ISBN

9783031822407

9783031822391

Edizione

[1st ed. 2025.]

Descrizione fisica

1 online resource (295 pages)

Collana

Lecture Notes in Artificial Intelligence, , 2945-9141 ; ; 15501

Altri autori (Persone)

LiXiaoxiao

XuZenglin

GoebelRandy

KingIrwin

Disciplina

006.3

Soggetti

Artificial intelligence

Artificial Intelligence

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

This LNAI volume constitutes the post proceedings of International Federated Learning Workshops such as follows: FL@FM-WWW 2024, FL@FM-ICME 2024, FL@FM-IJCAI 2024 and FL@FM-NeurIPS 2024. This LNAI volume focuses on the following topics: Efficient Model Adaptation and Personalization, Data Heterogeneity and Incomplete Data, Integration of Specialized Neural Architectures, Frameworks and Tools for Federated Learning, Applications in Domain-Specific Contexts, Unsupervised and Lightweight Learning, and Causal Discovery and Black-Box Optimization. .