Vai al contenuto principale della pagina

Algorithmic learning theory : 10th International Conference, ALT'99, Tokyo, Japan, December 6-8, 1999 : proceedings / / Osamu Watanabe, Takashi Yokomori, eds



(Visualizza in formato marc)    (Visualizza in BIBFRAME)

Titolo: Algorithmic learning theory : 10th International Conference, ALT'99, Tokyo, Japan, December 6-8, 1999 : proceedings / / Osamu Watanabe, Takashi Yokomori, eds Visualizza cluster
Pubblicazione: Berlin, Germany ; ; New York, New York : , : Springer, , [1999]
©1999
Edizione: 1st ed. 1999.
Descrizione fisica: 1 online resource (374 p.)
Disciplina: 006.3/1
Soggetto topico: Machine learning
Computer algorithms
Persona (resp. second.): WatanabeOsamu <1958->
YokomoriTakashi
Note generali: Description based upon print version of record.
Nota di bibliografia: Includes bibliographical references and index.
Nota di contenuto: Invited Lectures -- Tailoring Representations to Different Requirements -- Theoretical Views of Boosting and Applications -- Extended Stochastic Complexity and Minimax Relative Loss Analysis -- Regular Contributions -- Algebraic Analysis for Singular Statistical Estimation -- Generalization Error of Linear Neural Networks in Unidentifiable Cases -- The Computational Limits to the Cognitive Power of the Neuroidal Tabula Rasa -- The Consistency Dimension and Distribution-Dependent Learning from Queries (Extended Abstract) -- The VC-Dimension of Subclasses of Pattern Languages -- On the V ? Dimension for Regression in Reproducing Kernel Hilbert Spaces -- On the Strength of Incremental Learning -- Learning from Random Text -- Inductive Learning with Corroboration -- Flattening and Implication -- Induction of Logic Programs Based on ?-Terms -- Complexity in the Case Against Accuracy: When Building One Function-Free Horn Clause Is as Hard as Any -- A Method of Similarity-Driven Knowledge Revision for Type Specializations -- PAC Learning with Nasty Noise -- Positive and Unlabeled Examples Help Learning -- Learning Real Polynomials with a Turing Machine -- Faster Near-Optimal Reinforcement Learning: Adding Adaptiveness to the E3 Algorithm -- A Note on Support Vector Machine Degeneracy -- Learnability of Enumerable Classes of Recursive Functions from “Typical” Examples -- On the Uniform Learnability of Approximations to Non-recursive Functions -- Learning Minimal Covers of Functional Dependencies with Queries -- Boolean Formulas Are Hard to Learn for Most Gate Bases -- Finding Relevant Variables in PAC Model with Membership Queries -- General Linear Relations among Different Types of Predictive Complexity -- Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph -- On Learning Unions of Pattern Languages and Tree Patterns.
Titolo autorizzato: Algorithmic Learning Theory  Visualizza cluster
ISBN: 1-280-80456-4
9786610804566
3-540-46769-6
Formato: Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione: Inglese
Record Nr.: 996465614103316
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Serie: Lecture Notes in Artificial Intelligence ; ; 1720