1.

Record Nr.

UNISA996465614103316

Titolo

Algorithmic learning theory : 10th International Conference, ALT'99, Tokyo, Japan, December 6-8, 1999 : proceedings / / Osamu Watanabe, Takashi Yokomori, eds

Pubbl/distr/stampa

Berlin, Germany ; ; New York, New York : , : Springer, , [1999]

©1999

ISBN

1-280-80456-4

9786610804566

3-540-46769-6

Edizione

[1st ed. 1999.]

Descrizione fisica

1 online resource (374 p.)

Collana

Lecture Notes in Artificial Intelligence ; ; 1720

Disciplina

006.3/1

Soggetti

Machine learning

Computer algorithms

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Invited Lectures -- Tailoring Representations to Different Requirements -- Theoretical Views of Boosting and Applications -- Extended Stochastic Complexity and Minimax Relative Loss Analysis -- Regular Contributions -- Algebraic Analysis for Singular Statistical Estimation -- Generalization Error of Linear Neural Networks in Unidentifiable Cases -- The Computational Limits to the Cognitive Power of the Neuroidal Tabula Rasa -- The Consistency Dimension and Distribution-Dependent Learning from Queries (Extended Abstract) -- The VC-Dimension of Subclasses of Pattern Languages -- On the V ? Dimension for Regression in Reproducing Kernel Hilbert Spaces -- On the Strength of Incremental Learning -- Learning from Random Text -- Inductive Learning with Corroboration -- Flattening and Implication -- Induction of Logic Programs Based on ?-Terms -- Complexity in the Case Against Accuracy: When Building One Function-Free Horn Clause Is as Hard as Any -- A Method of Similarity-Driven Knowledge Revision for Type Specializations -- PAC Learning with Nasty Noise -- Positive and Unlabeled Examples Help Learning -- Learning Real Polynomials with a Turing Machine -- Faster Near-Optimal Reinforcement Learning:



Adding Adaptiveness to the E3 Algorithm -- A Note on Support Vector Machine Degeneracy -- Learnability of Enumerable Classes of Recursive Functions from “Typical” Examples -- On the Uniform Learnability of Approximations to Non-recursive Functions -- Learning Minimal Covers of Functional Dependencies with Queries -- Boolean Formulas Are Hard to Learn for Most Gate Bases -- Finding Relevant Variables in PAC Model with Membership Queries -- General Linear Relations among Different Types of Predictive Complexity -- Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph -- On Learning Unions of Pattern Languages and Tree Patterns.