Vai al contenuto principale della pagina
| Autore: |
Hassanien Aboul Ella
|
| Titolo: |
The 9th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA’25), Volume 2 / / edited by Aboul Ella Hassanien, Eman Karam El-Sayed, Ashraf Darwish, Vaclav Snasel
|
| Pubblicazione: | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2026 |
| Edizione: | 1st ed. 2026. |
| Descrizione fisica: | 1 online resource (364 pages) |
| Disciplina: | 006.3 |
| Soggetto topico: | Computational intelligence |
| Artificial intelligence | |
| Machine learning | |
| Computational Intelligence | |
| Artificial Intelligence | |
| Machine Learning | |
| Altri autori: |
El-SayedEman Karam
DarwishAshraf
SnaselVaclav
|
| Nota di contenuto: | YOLO-ViT: A Hybrid Deep Learning Model for Eye Disease Classification -- Machine Learning-Driven Adaptive Blockchain Security for IoT Devices -- Design of a Command Control Server Searching System Centered around DNS Analyses -- Enhancing OTP-Vote: Strengthening End-to-End Verifiability and Auditability with Machine Learning Techniques. |
| Sommario/riassunto: | This volume explores the forefront of AI innovation in building secure, sustainable, and intelligent systems. From adaptive blockchain solutions for IoT and advances in photonic quantum computing to DNS-based cyber defense and disaster-resilient sensor networks, the research presented addresses critical challenges in digital infrastructure. Additional highlights include AI-driven environmental forecasting, assistive technologies for dyslexia, and machine learning applications in law enforcement—demonstrating AI’s expanding role in safeguarding infrastructure, optimizing resources, and advancing societal resilience. . |
| Titolo autorizzato: | The 9th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA’25), Volume 2 ![]() |
| ISBN: | 3-032-07326-X |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911047689703321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilitĂ qui |