Vai al contenuto principale della pagina
| Autore: |
El Hami Abdelkhalak
|
| Titolo: |
Multi-Physics Optimization : Mechanics, Fluid Interaction Structure, Shaping, Stochastic Finite Elements, Random Vibrations, Fatigue
|
| Pubblicazione: | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| ©2025 | |
| Edizione: | 1st ed. |
| Descrizione fisica: | 1 online resource (276 pages) |
| Disciplina: | 620.00452 |
| Altri autori: |
EidMohamed
|
| Nota di contenuto: | Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1. Introduction to Optimization in Mechanics -- 1.1. Introduction -- 1.2. Problems of general dynamics -- 1.2.1. Finite element methods -- 1.2.2. Modal assumption method -- 1.2.3. Direct integration -- 1.3. Structural optimization -- 1.3.1. Design optimization -- 1.3.2. Shape optimization -- 1.3.3. Topological optimization -- 1.3.4. Definitions and formulation of an optimization problem -- 1.4. Structures with uncertain parameters -- 1.4.1. Monte Carlo simulation -- 1.4.2. Analytical method -- 1.4.3. Stochastic finite element method -- 1.4.4. Fuzzy logic method -- 1.4.5. Bibliography study of reliability methods -- 1.4.6. Bibliography study of reliability optimization methods -- 1.5. Conclusion -- Chapter 2. Modal Synthesis and Reliability Optimization Methods -- 2.1. Introduction -- 2.2. State of the art of modal synthesis methods -- 2.2.1. Introduction -- 2.2.2. Model reduction method for elastodynamic systems -- 2.2.3. Fixed-interface method (Craig Bampton) -- 2.2.4. Reduction of junction degrees of freedom -- 2.3. Coupling of modal synthesis and RBDO methods -- 2.4. Numerical application -- 2.4.1. L-Plate embedded at the ends -- 2.4.2. Analysis of results -- 2.4.3. A vibrating connecting rod -- 2.4.4. Application: transient model reduction -- 2.5. Conclusion -- Chapter 3. Modal Synthesis Methods and Stochastic Finite Element Methods -- 3.1. Introduction -- 3.2. Linear dynamical problems -- 3.2.1. Equations of motion -- 3.2.2. Solution in transient state -- 3.2.3. Solution in the harmonic domain -- 3.2.4. Direct integration -- 3.3. Modal synthesis methods -- 3.3.1. Introduction -- 3.3.2. Substructure assembly technique -- 3.3.3. Fixed-interface method -- 3.3.4. MacNeal's open-interface method -- 3.3.5. Open interface method -- 3.3.6. Hybrid method. |
| 3.3.7. Reduction of junction d.o.f -- 3.4. Stochastic finite element methods -- 3.4.1. Introduction -- 3.4.2. Discretization of random fields -- 3.4.3. Methods for calculating moments -- 3.5. Conclusion -- Chapter 4. Fatigue and Reliability Optimization for Structures Subjected to Random Vibrations -- 4.1. Introduction -- 4.2. Fatigue damage analysis -- 4.2.1. Formulations and developments -- 4.2.2. Strategy for the fatigue damage analysis -- 4.3. Reliability optimization of structures subjected to random vibrations -- 4.3.1. Deterministic optimization -- 4.3.2. Reliability-based design optimization (RBDO) -- 4.3.3. Reliability optimization of structures subjected to random vibrations -- 4.4. Applications -- 4.4.1. Problem description -- 4.4.2. Results and discussion -- 4.5. Conclusion -- Chapter 5. Optimization and Shaping -- 5.1. Introduction -- 5.2. Different approaches to process optimization -- 5.3. Characterization of forming processes by objective functions -- 5.4. Deterministic and probabilistic optimization of a T-shaped tube -- 5.4.1. Selection of objective function and definition of constraints -- 5.4.2. Deterministic formulation of the optimization problem -- 5.4.3. Probabilistic formulation of the optimization problem -- 5.4.4. Sensitivity of optimums to uncertainties -- 5.5. Deterministic and reliable optimization of a tube with two expansion areas -- 5.5.1. Deterministic formulation of the optimization problem -- 5.5.2. Reliability formulation of the optimization problem -- 5.5.3. Numerical results -- Chapter 6. Reliability and FSI Optimization -- 6.1. Introduction -- 6.2. Reliability optimization in mechanics -- 6.2.1. Deterministic optimization -- 6.2.2. Different approaches to RBDO -- 6.2.3. Traditional approach -- 6.2.4. Hybrid approach -- 6.2.5. Hybrid frequency approach -- 6.3. Safest point (SP) method. | |
| 6.4. Numerical simulation -- 6.4.1. Reliability calculation for an aircraft wing -- 6.4.2. RBDO application to the aircraft wing -- Chapter 7. Reliability-based Optimization for Dental Implants -- 7.1. Introduction -- 7.2. Stochastic approach -- 7.2.1. Monte Carlo (MC) method -- 7.2.2. Generalized polynomial chaos (GPC) method -- 7.3. Deterministic design optimization -- 7.4. Reliability-based design optimization (RBDO) -- 7.4.1. Traditional method -- 7.4.2. Optimal safety factor (OSF) using GPC -- 7.5. Numerical result -- 7.5.1. 2D dental implant -- 7.6. Conclusion -- Appendices -- Appendix 1. Binomial Distribution -- Appendix 2. Geometric Distribution -- Appendix 3. Poisson Distribution -- Appendix 4. Exponential Distribution -- Appendix 5. Normal Distribution -- Appendix 6. Log-Normal Distribution -- Appendix 7. Weibull Distribution -- Appendix 8. Pareto Distribution -- Appendix 9. Extreme Value Distribution -- Appendix 10. Asymptotic Distributions -- Appendix 11. Introduction to Optimization -- Appendix 12. Notion of Statistics -- References -- Index -- Other titles from ISTE in Mechanical Engineering and Solid Mechanics -- EULA. | |
| Sommario/riassunto: | This book illustrates, in detail, the state of the art in the multidisciplinary science of multi-physics optimization.In a context of the perpetual search for improved industrial competitiveness, the evolution of product design and optimization methods and tools appears to be a strategic necessity in view of the imperative to reduce costs. |
| Titolo autorizzato: | Multi-Physics Optimization ![]() |
| ISBN: | 1-394-40172-8 |
| 1-394-40170-1 | |
| 1-394-40171-X | |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9911021978203321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |