Vai al contenuto principale della pagina
| Titolo: |
Graph partitioning and graph clustering : 10th DIMACS Implementation Challenge Workshop, February 13-14, 2012, Georgia Institute of Technology, Atlanta, GA / / David A. Bader [and three others], editors
|
| Pubblicazione: | Providence, Rhode Island : , : American Mathematical Society, , 2013 |
| ©2013 | |
| Descrizione fisica: | 1 online resource (258 p.) |
| Disciplina: | 511/.5 |
| Soggetto topico: | Graph algorithms |
| Graph theory | |
| Classificazione: | 05C8568W0505C8268W1068R1005C5005C65 |
| Persona (resp. second.): | BaderDavid A. <1969-> |
| Note generali: | Description based upon print version of record. |
| Nota di bibliografia: | Includes bibliographical references. |
| Nota di contenuto: | Preface -- 1. Introducing the 10th Challenge " Graph Partitioning and Graph Clustering -- 2. Key Results -- 3. Challenge Description -- 4. Contributions to this Collection -- 5. Directions for Further Research -- High quality graph partitioning -- 1. Introduction -- 2. Preliminaries -- 3. Related Work -- 4. Karlsruhe Fast Flow Partitioner -- 5. KaFFPa Evolutionary -- 6. Experiments -- 7. Conclusion and Future Work -- References -- Abusing a hypergraph partitioner for unweighted graph partitioning -- 1. Introduction -- 2. Mondriaan -- 3. Results -- 4. Conclusion -- References -- Parallel partitioning with Zoltan: Is hypergraph partitioning worth it? -- 1. Introduction -- 2. Models and Metrics -- 3. Overview of the Zoltan Hypergraph Partitioner -- 4. Experiments -- 5. Conclusions -- Acknowledgements -- References -- UMPa: A multi-objective, multi-level partitioner for communication minimization -- 1. Introduction -- 2. Background -- 3. UMPa: A multi-objective partitioning tool for communication minimization -- 4. Experimental results -- 5. Conclusions and future work -- References -- Appendix A. DIMACS Challenge Results -- Shape optimizing load balancing for MPI-parallel adaptive numerical simulations -- 1. Introduction -- 2. Related Work -- 3. Diffusion-based Repartitioning with DibaP -- 4. PDibaP: Parallel DibaP for Repartitioning -- 5. Experiments -- 6. Conclusions -- References -- Graph partitioning for scalable distributed graph computations -- 1. Introduction -- 2. Parallel Breadth-first Search -- 3. Analysis of Communication Costs -- 4. Graph and Hypergraph Partitioning Metrics -- 5. Experimental Setup -- 6. Microbenchmarking Collectives Performance -- 7. Performance Analysis and Results -- 8. Conclusions and Future Work -- Acknowledgments -- References -- Appendix on edge count per processor -- Using graph partitioning for efficient network modularity optimization -- 1. Introduction -- 2. Reduction of modularity optimization to minimum weighted cut -- 3. Implementation of the modularity optimization algorithm based on the Metis package -- 4. Comparison on DIMACS testbed graphs -- 5. Conclusion -- References -- Modularity maximization in networks by variable neighborhood search -- 1. Introduction -- 2. Description of the heuristic -- 3. Description of the exact method -- 4. Experimental Results -- 5. Conclusion -- References -- Network clustering via clique relaxations: A community based approach -- 1. Introduction -- 2. Background -- 3. Clustering Algorithm -- 4. Computational Results -- 5. Conclusion -- Acknowledgements -- References -- Identifying base clusters and their application to maximizing modularity -- Complete hierarchical cut-clustering: A case study on expansion and modularity -- A partitioning-based divisive clustering technique for maximizing the modularity -- An ensemble learning strategy for graph clustering -- Parallel community detection for massive graphs -- Graph coarsening and clustering on the GPU. |
| Titolo autorizzato: | Graph partitioning and graph clustering ![]() |
| ISBN: | 0-8218-9869-8 |
| Formato: | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione: | Inglese |
| Record Nr.: | 9910811759503321 |
| Lo trovi qui: | Univ. Federico II |
| Opac: | Controlla la disponibilità qui |