1.

Record Nr.

UNISA996386256203316

Autore

White John <fl. 1613-1651.>

Titolo

White, 1650 [[electronic resource] ] : a new almanack and prognostication for the yeare of our Lord Christ 1650, being the second after bissextile or leap-yeare : wherein is contained varietie of matter worth the observation : calculated for the meridian of the most honourable city of London and will serve generally for the monarchy of Great Britaine / / by John White .

Pubbl/distr/stampa

London, : Printed by F.K. for the Company of Stationers, 1650

Descrizione fisica

[20] p. : ill., map

Soggetti

Almanacs, English

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"A prognostication for the year of our Lord Christ 1650 ..." has special t.p.

Reproduction of original in the University of Illinois (Urbana-Champaign Campus). Library.

Sommario/riassunto

eebo-0167



2.

Record Nr.

UNINA9910811759503321

Titolo

Graph partitioning and graph clustering : 10th DIMACS Implementation Challenge Workshop, February 13-14, 2012, Georgia Institute of Technology, Atlanta, GA / / David A. Bader [and three others], editors

Pubbl/distr/stampa

Providence, Rhode Island : , : American Mathematical Society, , 2013

©2013

ISBN

0-8218-9869-8

Descrizione fisica

1 online resource (258 p.)

Collana

Contemporary mathematics, , 1098-3627 ; ; 588 , 0271-4132

Classificazione

05C8568W0505C8268W1068R1005C5005C65

Disciplina

511/.5

Soggetti

Graph algorithms

Graph theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Preface --  1. Introducing the 10th Challenge " Graph Partitioning and Graph Clustering --  2. Key Results --  3. Challenge Description --  4. Contributions to this Collection --  5. Directions for Further Research --  High quality graph partitioning --  1. Introduction --  2. Preliminaries --  3. Related Work --  4. Karlsruhe Fast Flow Partitioner --  5. KaFFPa Evolutionary --  6. Experiments --  7. Conclusion and Future Work --  References --  Abusing a hypergraph partitioner for unweighted graph partitioning --  1. Introduction --  2. Mondriaan --  3. Results --  4. Conclusion --  References --  Parallel partitioning with Zoltan: Is hypergraph partitioning worth it? --  1. Introduction --  2. Models and Metrics --  3. Overview of the Zoltan Hypergraph Partitioner --  4. Experiments --  5. Conclusions --  Acknowledgements --  References --  UMPa: A multi-objective, multi-level partitioner for communication minimization --  1. Introduction --  2. Background --  3. UMPa: A multi-objective partitioning tool for communication minimization --  4. Experimental results --  5. Conclusions and future work --  References --  Appendix A. DIMACS Challenge Results --  Shape optimizing load balancing for MPI-parallel adaptive numerical simulations --  1. Introduction --  2. Related Work --  3. Diffusion-based Repartitioning with DibaP --  4. PDibaP: Parallel DibaP for Repartitioning --  5. Experiments --  6. Conclusions --  



References --  Graph partitioning for scalable distributed graph computations --  1. Introduction --  2. Parallel Breadth-first Search --  3. Analysis of Communication Costs --  4. Graph and Hypergraph Partitioning Metrics --  5. Experimental Setup --  6. Microbenchmarking Collectives Performance --  7. Performance Analysis and Results --  8. Conclusions and Future Work --  Acknowledgments --  References --  Appendix on edge count per processor --  Using graph partitioning for efficient network modularity optimization --  1. Introduction --  2. Reduction of modularity optimization to minimum weighted cut --  3. Implementation of the modularity optimization algorithm based on the Metis package --  4. Comparison on DIMACS testbed graphs --  5. Conclusion --  References --  Modularity maximization in networks by variable neighborhood search --  1. Introduction --  2. Description of the heuristic --  3. Description of the exact method --  4. Experimental Results --  5. Conclusion --  References --  Network clustering via clique relaxations: A community based approach --  1. Introduction --  2. Background --  3. Clustering Algorithm --  4. Computational Results --  5. Conclusion --  Acknowledgements --  References --  Identifying base clusters and their application to maximizing modularity -- Complete hierarchical cut-clustering: A case study on expansion and modularity -- A partitioning-based divisive clustering technique for maximizing the modularity -- An ensemble learning strategy for graph clustering -- Parallel community detection for massive graphs -- Graph coarsening and clustering on the GPU.